Previous |  Up |  Next

Article

Summary:
The distribution of each member of the family of statistics based on the $R_{\phi }$-divergence for testing goodness-of-fit is a chi-squared to $o(1)$ (Pardo [pard96]). In this paper a closer approximation to the exact distribution is obtained by extracting the $\phi $-dependent second order component from the $o(1)$ term.
References:
[1] Ali M. S., Silvey D.: A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. Ser. B 28 (1966), 131–140 MR 0196777 | Zbl 0203.19902
[2] Bednarski T., Ledwina T.: A note on a biasedness of tests of fit. Mathematische Operationsforschung und Statistik, Series Statistics 9 (1978), 191–193 MR 0512257
[3] Burbea J.: $J$-divergences and related topics. Encycl. Statist. Sci. 44 (1983), 290–296
[4] Burbea J., Rao C. R.: On the convexity of some divergence measures based on entropy functions. IEEE Trans. Inform. Theory 28 (1982), 489–495 DOI 10.1109/TIT.1982.1056497 | MR 0672884 | Zbl 0479.94009
[5] Burbea J., Rao C. R.: On the convexity of higher order Jensen differences based on entropy function. IEEE Trans. Inform. Theory 28 (1982), 961–963 DOI 10.1109/TIT.1982.1056573 | MR 0687297
[6] Cohen A., Sackrowitz H. B.: Unbiasedness of the chi–square, likelihood ratio, and other goodness of fit tests for the equal cell case. Ann. Statist. 3 (1975), 959–964 DOI 10.1214/aos/1176343197 | MR 0381087 | Zbl 0311.62021
[7] Cressie N., Read T. R. C.: Multinomial goodness of fit test. J. Roy. Statist. Soc. Ser. B 46 (1984), 440–464 MR 0790631
[8] Csiszár I.: Eine Informationtheoretische Ungleichung und ihre Anwendung auf den Bewis der Ergodizität von Markhoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. Ser. A 8 (1963), 85–108 MR 0164374
[9] Greenwood P. E., Nikolin M. S.: A Guide to Chi–squared Testing. Wiley, New York 1996 MR 1379800
[10] Liese F., Vajda I.: Convex Statistical Distances. Teubner, Leipzig 1987 MR 0926905 | Zbl 0656.62004
[11] Mann H. B., Wald A.: On the choice of the number of intervals in the application of the chi–square test. Ann. Math. Statist. 13 (1942), 306–317 DOI 10.1214/aoms/1177731569 | MR 0007224
[12] Pardo M. C.: On Burbea–Rao divergences based goodness–of–fit tests for multinomial models. J. Multivariate Anal. 69 (1999), 65–87 DOI 10.1006/jmva.1998.1799 | MR 1701407
[13] Pardo M. C., Vajda I.: About distances of discrete distributions satisfying the data processing theorem of information theory. Trans. IEEE Inform. Theory 43 (1997), 4, 1288–1293 DOI 10.1109/18.605597 | MR 1454961 | Zbl 0884.94015
[14] Pearson K.: On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophy Magazine 50 (1900), 157–172
[15] Rao C. R.: Asymptotic efficiency and limiting information. In: Proc. 4th Berkeley Symp. on Math. Statist. Probab. 1, Univ. of California Press, Berkeley 1961, pp. 531–546 MR 0133192 | Zbl 0156.39802
[16] Rao C. R.: Linear Statistical Inference and Its Applications. Second edition. Wiley, New York 1973 MR 0346957 | Zbl 0256.62002
[17] Rao C. R.: Analysis of Diversity: A Unified Approach. Technical Report No. 81-26, University of Pittsburhg 1981 MR 0705316 | Zbl 0569.62061
[18] Read T. R. C.: On Choosing a Goodness–of–fit test. Unpublished Ph.D. Thesis, Flinders University, South Australia 1982 Zbl 0564.62033
[19] Read T. R. C.: Closer asymptotic approximations for the distributions of the power divergence goodness–of–fit statistics. Ann. Inst. Statist. Math. 36 (1984), Part A, 59–69 DOI 10.1007/BF02481953 | MR 0752006 | Zbl 0554.62015
[20] Read T. R. C., Cressie N.: Goodness of Fit Statistics for Discrete Multivariate Data. Springer, New York 1988 MR 0955054 | Zbl 0663.62065
[21] Schorr B.: On the choice of the class intervals in the application of the chi–square test. Math. Operationsforsch. Statist. 5 (1974), 357–377 DOI 10.1080/02331887408801174 | MR 0388650 | Zbl 0285.62018
[22] Siotani M., Fujikoshi Y.: Asymptotic approximations for the distributions of multinomial goodness–of–fit statistics. Hiroshima Math. J. 14 (1984), 115–124 MR 0750392 | Zbl 0553.62017
[23] Sturges H. A.: The choice of a class interval. J. Amer. Statist. Assoc. 21 (1926), 65–66 DOI 10.1080/01621459.1926.10502161
[24] Vajda I.: Theory of Statistical Inference and Information. Kluwer Academic Publishers, Dordrecht – Boston 1989 Zbl 0711.62002
[25] Yarnold J. K.: Asymptotic approximations for the probability that a sum of lattice random vectors lies in a convex set. Ann. of Math. Statist. 43 (1972), 1566–1580 DOI 10.1214/aoms/1177692389 | MR 0372967 | Zbl 0256.62022
[26] Zografos K., Ferentinos K., Papaioannou T.: $\varphi $-divergence statistics: sampling properties and multinomial goodness of fit divergence tests. Comm. Statist. – Theory Methods 19 (1990), 5, 1785–1802 DOI 10.1080/03610929008830290 | MR 1075502
Partner of
EuDML logo