[1] Ali M. S., Silvey D.:
A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. Ser. B 28 (1966), 131–140
MR 0196777 |
Zbl 0203.19902
[2] Bednarski T., Ledwina T.:
A note on a biasedness of tests of fit. Mathematische Operationsforschung und Statistik, Series Statistics 9 (1978), 191–193
MR 0512257
[3] Burbea J.: $J$-divergences and related topics. Encycl. Statist. Sci. 44 (1983), 290–296
[5] Burbea J., Rao C. R.:
On the convexity of higher order Jensen differences based on entropy function. IEEE Trans. Inform. Theory 28 (1982), 961–963
DOI 10.1109/TIT.1982.1056573 |
MR 0687297
[7] Cressie N., Read T. R. C.:
Multinomial goodness of fit test. J. Roy. Statist. Soc. Ser. B 46 (1984), 440–464
MR 0790631
[8] Csiszár I.:
Eine Informationtheoretische Ungleichung und ihre Anwendung auf den Bewis der Ergodizität von Markhoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. Ser. A 8 (1963), 85–108
MR 0164374
[9] Greenwood P. E., Nikolin M. S.:
A Guide to Chi–squared Testing. Wiley, New York 1996
MR 1379800
[11] Mann H. B., Wald A.:
On the choice of the number of intervals in the application of the chi–square test. Ann. Math. Statist. 13 (1942), 306–317
DOI 10.1214/aoms/1177731569 |
MR 0007224
[13] Pardo M. C., Vajda I.:
About distances of discrete distributions satisfying the data processing theorem of information theory. Trans. IEEE Inform. Theory 43 (1997), 4, 1288–1293
DOI 10.1109/18.605597 |
MR 1454961 |
Zbl 0884.94015
[14] Pearson K.: On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophy Magazine 50 (1900), 157–172
[15] Rao C. R.:
Asymptotic efficiency and limiting information. In: Proc. 4th Berkeley Symp. on Math. Statist. Probab. 1, Univ. of California Press, Berkeley 1961, pp. 531–546
MR 0133192 |
Zbl 0156.39802
[16] Rao C. R.:
Linear Statistical Inference and Its Applications. Second edition. Wiley, New York 1973
MR 0346957 |
Zbl 0256.62002
[17] Rao C. R.:
Analysis of Diversity: A Unified Approach. Technical Report No. 81-26, University of Pittsburhg 1981
MR 0705316 |
Zbl 0569.62061
[18] Read T. R. C.:
On Choosing a Goodness–of–fit test. Unpublished Ph.D. Thesis, Flinders University, South Australia 1982
Zbl 0564.62033
[19] Read T. R. C.:
Closer asymptotic approximations for the distributions of the power divergence goodness–of–fit statistics. Ann. Inst. Statist. Math. 36 (1984), Part A, 59–69
DOI 10.1007/BF02481953 |
MR 0752006 |
Zbl 0554.62015
[20] Read T. R. C., Cressie N.:
Goodness of Fit Statistics for Discrete Multivariate Data. Springer, New York 1988
MR 0955054 |
Zbl 0663.62065
[22] Siotani M., Fujikoshi Y.:
Asymptotic approximations for the distributions of multinomial goodness–of–fit statistics. Hiroshima Math. J. 14 (1984), 115–124
MR 0750392 |
Zbl 0553.62017
[24] Vajda I.:
Theory of Statistical Inference and Information. Kluwer Academic Publishers, Dordrecht – Boston 1989
Zbl 0711.62002
[26] Zografos K., Ferentinos K., Papaioannou T.:
$\varphi $-divergence statistics: sampling properties and multinomial goodness of fit divergence tests. Comm. Statist. – Theory Methods 19 (1990), 5, 1785–1802
DOI 10.1080/03610929008830290 |
MR 1075502