Previous |  Up |  Next

Article

Keywords:
linear regression; $M$-test procedures
Summary:
Regression and scale invariant $M$-test procedures are developed for detection of structural changes in linear regression model. Their limit properties are studied under the null hypothesis.
References:
[1] Billingsley P.: Convergence of Probability Measures. Wiley, New York 1968 MR 0233396 | Zbl 0944.60003
[2] Csörgő M., Horváth L.: Weighted Approximations in Probability and Statistics. Wiley, New York 1993 MR 1215046
[3] Csörgő M., Horváth L.: Limit Theorems in Change–point Analysis. Wiley, New York 1997 MR 2743035
[5] Huber P. J.: Robust Statistics. Wiley, New York 1981 MR 0606374
[6] Hušková M.: Some sequential procedures based on regression rank scores. Nonparametric Statistics 3 (1994), 285–298 DOI 10.1080/10485259408832588 | MR 1291550
[7] Hušková M.: Limit theorems for $M$-processes via rank statistics processes. In: Advances in Combinatorial Methods with Applications to Probability and Statistics (N. Balakrishnan, ed.), Birkhäuser, Boston 1997, pp. 521–534 MR 1456754 | Zbl 0933.62040
[8] Hušková M.: $L_1$-test procedures for detection of change. In: $L_1$-Statistical Procedures and Related Topics (IMS Lecture Notes–Monograph Series 31), Institute of Mathematical Statistics, Hayward, California 1997, pp. 56–70 Zbl 0935.62052
[9] Jandhyala V. K., MacNeill I. B.: Residual partial sum limit process for regression models with applications to detecting parameter changes at unknown times. Stochastic Process. Appl. 33 (1989), 309–323 MR 1030215 | Zbl 0679.62056
[10] Jurečková J., Sen P. K.: On adaptive scale-equivariant $M$-estimators in linear models. Statist. Decisions. Supplement Issue 1 (1984), 31–41 Zbl 0586.62042
[11] Jurečková J., Sen P. K.: Regression rank scores scale statistics and studentization in linear models. In: Asymptotic Statistics (M. Hušková and P. Mandl, eds.), Physica–Verlag, Heidelberg 1994, pp. 111–122 MR 1311932
[12] Ploberger K., Krämer W., Kontrus K.: A new test for structural stability in linear regression model. J. Econometrics 40 (1989), 307–318 DOI 10.1016/0304-4076(89)90087-0 | MR 0994952
[13] Quandt R. E.: Tests of hypothesis that a linear regression systems obeys two separate regimes. J. Amer. Statist. Assoc. 55 (1960), 324–330 DOI 10.1080/01621459.1960.10482067 | MR 0114269
[14] Víšek T.: Detection of Changes in Econometric Models. Ph.D. Dissertation, Charles University, Prague 1999
[15] Worsley K. J.: Testing for a two-phase multiple regression. Technometrics 25 (1983), 35–42 DOI 10.1080/00401706.1983.10487817 | MR 0694210 | Zbl 0508.62061
Partner of
EuDML logo