[2] Csörgő M., Horváth L.:
Weighted Approximations in Probability and Statistics. Wiley, New York 1993
MR 1215046
[3] Csörgő M., Horváth L.:
Limit Theorems in Change–point Analysis. Wiley, New York 1997
MR 2743035
[5] Huber P. J.:
Robust Statistics. Wiley, New York 1981
MR 0606374
[7] Hušková M.:
Limit theorems for $M$-processes via rank statistics processes. In: Advances in Combinatorial Methods with Applications to Probability and Statistics (N. Balakrishnan, ed.), Birkhäuser, Boston 1997, pp. 521–534
MR 1456754 |
Zbl 0933.62040
[8] Hušková M.:
$L_1$-test procedures for detection of change. In: $L_1$-Statistical Procedures and Related Topics (IMS Lecture Notes–Monograph Series 31), Institute of Mathematical Statistics, Hayward, California 1997, pp. 56–70
Zbl 0935.62052
[9] Jandhyala V. K., MacNeill I. B.:
Residual partial sum limit process for regression models with applications to detecting parameter changes at unknown times. Stochastic Process. Appl. 33 (1989), 309–323
MR 1030215 |
Zbl 0679.62056
[10] Jurečková J., Sen P. K.:
On adaptive scale-equivariant $M$-estimators in linear models. Statist. Decisions. Supplement Issue 1 (1984), 31–41
Zbl 0586.62042
[11] Jurečková J., Sen P. K.:
Regression rank scores scale statistics and studentization in linear models. In: Asymptotic Statistics (M. Hušková and P. Mandl, eds.), Physica–Verlag, Heidelberg 1994, pp. 111–122
MR 1311932
[14] Víšek T.: Detection of Changes in Econometric Models. Ph.D. Dissertation, Charles University, Prague 1999