Previous |  Up |  Next

Article

Summary:
Gaussian semiparametric or local Whittle estimation of the memory parameter in standard long memory processes was proposed by Robinson [18]. This technique shows several advantages over the popular log- periodogram regression introduced by Geweke and Porter–Hudak [7]. In particular under milder assumptions than those needed in the log periodogram regression it is asymptotically more efficient. We analyse the asymptotic behaviour of the Gaussian semiparametric estimate of the memory parameter in seasonal or cyclical long memory processes allowing for asymmetric spectral divergences or zeros. Consistency and asymptotic normality are obtained.
References:
[1] Arteche J.: Log–periodogram regression in seasonal/cyclical long memory time series. Working Paper, Biltoki 98.17, University of the Basque Country, 1998
[2] Arteche J., Robinson P. M.: Seasonal and cyclical long memory. In: Asymptotics, Nonparametrics and Time Series (S. Ghosh, ed.), Marcel Dekker Inc., New York 1999, pp. 115–148 MR 1724697 | Zbl 1069.62539
[3] Brillinger D. R.: Time Series: Data Analysis and Theory. Holden–Day, San Francisco 1975 MR 0443257 | Zbl 0983.62056
[4] Carlin J. B., Dempster A. P.: Sensitivity analysis of seasonal adjustments: empirical case studies. J. Amer. Statist. Assoc. 84 (1989), 6–20 DOI 10.1080/01621459.1989.10478729 | MR 0999663
[5] Dahlhaus R.: Efficient parameter estimation for self-similar processes. Ann. Statist. 17 (1989), 1749–1766 DOI 10.1214/aos/1176347393 | MR 1026311 | Zbl 0703.62091
[6] Fox R., Taqqu M. S.: Large sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14 (1986), 517–532 DOI 10.1214/aos/1176349936 | MR 0840512 | Zbl 0606.62096
[7] Geweke J., Porter–Hudak S.: The estimation and application of long–memory time series models. J. Time Ser. Anal. 4 (1983), 221–238 DOI 10.1111/j.1467-9892.1983.tb00371.x | MR 0738585 | Zbl 0534.62062
[8] Giraitis L., Surgailis D.: A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittle’s estimate. Probab. Theory Related Fields 86 (1990), 87–104 DOI 10.1007/BF01207515 | MR 1061950
[9] Gray H. L., Zhang N. F., Woorward W. A.: On generalized fractional processes. J. Time Ser. Anal. 10 (1989), 233–257 DOI 10.1111/j.1467-9892.1989.tb00026.x | MR 1028940
[10] Hall P., Heyde C. C.: Martingale Limit Theory and its Application in Probability and Mathematical Statistics. Academic Press, New York 1980 MR 0624435
[11] Hassler U.: (Mis)specification of long-memory in seasonal time series. J. Time Ser. Anal. 15 (1994), 19–30 DOI 10.1111/j.1467-9892.1994.tb00174.x | MR 1256854 | Zbl 0794.62059
[12] Heyde C. C., Gay R.: Smoothed periodogram asymptotics and estimation for processes and fields with possible long–range dependence. Stoch. Process. Appl. 45 (1993), 169–182 DOI 10.1016/0304-4149(93)90067-E | MR 1204868 | Zbl 0771.60021
[13] Heyde C. C., Seneta E.: Estimation theory for growth and immigration rates in multiplicative process. J. Appl. Probab. 9 (1972), 235–256 DOI 10.2307/3212796 | MR 0343385
[14] Jonas A. J.: Persistent Memory Random Processes. Ph.D. Thesis. Department of Statistics, Harvard University, 1983
[15] Kunsch H. R.: Statistical aspects of self-similar processes. In: Proc. First World Congress Bernoulli Soc. (Yu. Prohorov and V. V. Sazanov, eds.), VNU Science Press, Utrecht, 1 (1987), 67–74
[16] Robinson P. M.: Efficient tests of non-stationary hypothesis. J. Amer. Statist. Assoc. 89 (1994), 1420–1437 DOI 10.1080/01621459.1994.10476881 | MR 1310232
[17] Robinson P. M.: Log–periodogram regression of time series with long-range dependence. Ann. Statist. 23 (1995), 3, 1048–1072 DOI 10.1214/aos/1176324636 | MR 1345214 | Zbl 0838.62085
[18] Robinson P. M.: Gaussian semiparametric estimation of long–range dependence. Ann. Statist. 23 (1995), 1630–1661 DOI 10.1214/aos/1176324317 | MR 1370301 | Zbl 0843.62092
[19] Whittle P.: Estimation and information in stationary time series. Ark. Mat. 2 (1953), 423–434 DOI 10.1007/BF02590998 | MR 0060797 | Zbl 0053.41003
[20] Zygmund A.: Trigonometric Series. Cambridge University Press, Cambridge, UK 1977 MR 0617944 | Zbl 1084.42003
Partner of
EuDML logo