Previous |  Up |  Next

Article

Keywords:
periodic system; Riccati differential equation
Summary:
The paper is divided in two parts. In the first part a deep investigation is made on some system theoretical aspects of periodic systems and control, including the notions of $H_2$ and $H_\infty $ norms, the parametrization of stabilizing controllers, and the existence of periodic solutions to Riccati differential equations and/or inequalities. All these aspects are useful in the second part, where some parametrization and control problems in $H_2$ and $H_\infty $ are introduced and solved.
References:
[1] Bittanti S.: Deterministic and stochastic linear periodic systems. In: Time Series and Linear Systems (S. Bittanti, ed.), Springer Verlag, Berlin 1986, pp. 141–182 MR 0897824
[2] Bittanti S., Colaneri P., Nicolao G. De: The periodic Riccati equation. In: The Riccati equation (S. Bittanti, A. J. Laub, J. C. Willems, eds.), Springer Verlag, Berlin 1990, pp. 127–162 MR 1132054
[3] Bolzern P., Colaneri P.: The periodic Lyapunov equation. SIAM J. Matrix Analysis Appl. 4 (1998), 499–512 MR 0964664
[4] Doyle J. C., Glover K., Khargonekaar P. P., Francis B. A.: State–space solutions to standard $H_2$ and $H_{\infty }$ control problems. IEEE Trans. Automat. Control 34 (1989), 831–846 DOI 10.1109/9.29425 | MR 1004301
[5] Mita T., Zhi L. Kang, Ohushi S.: Correction of the FI result in $H_\infty $ control and parametrization of $H_\infty $ state feedback controllers. IEEE Trans. Automat. Control 38 (1993), 343–347 DOI 10.1109/9.250489 | MR 1206827
[6] Colaneri P., Geromel J. C., Locatelli A.: Control Systems Design – a $H_2$ and $H_\infty $ Viewpoint. Academic Press, New York 1997
[7] Bamieh B., Pearson J. B.: A general framework for linear periodic systems with application to $H_\infty $ sampled-data control. IEEE Trans. Automat. Control 37 (1992), 418–435 DOI 10.1109/9.126576 | MR 1153103
[8] Colaneri P.: Hamiltonian systems and periodic Riccati equations in $H_2$ and $H_{\infty }$ analysis and control of linear periodic systems. In: Proc. 30th Conference on Decision and Control, Brighton 1991, pp. 1914–1919
[9] Shayman M. A.: On the phase portrait of the matrix Riccati equation arising from the periodic control problem. SIAM J. Control Optim. 23 (1985), 27–32 DOI 10.1137/0323045 | MR 0798057 | Zbl 0578.93051
[10] Xie L., Souza C. E. De, Fragoso M. D.: $H_{\infty }$ filtering for linear periodic systems with parameter uncertainty. Systems Control Lett. 17 (1991), 343–350 DOI 10.1016/0167-6911(91)90133-Y | MR 1136535
[11] Colaneri P., Souza C. De: The $H_\infty $ control problem for continuous-time linear periodic systems. In: Proc. of the $2^{\mathrm {nd}}$ IFAC Workshop on Systems Structure and Control, Prague 1992, pp. 292–295
[12] Limeeberg D. J., Anderson B. D. O., Khargonekar P. P., Green M.: A game theoretical approach to $H_\infty $ control of time-varying systems. SIAM J. Control Optim. 30 (1992), 262–283 DOI 10.1137/0330017 | MR 1149068
[13] Ravi R., Nagpal K. M., Khargonekaar P. P.: $H_\infty $ control of linear time-varying systems: a state-space approach. SIAM J. Control Optim. 29 (1991), 1394–1413 DOI 10.1137/0329071 | MR 1132188
[14] Chapellat H., Dahleh M., Bhattacharrya S. P.: Structure and optimality of multivariable periodic controllers. IEEE Trans. Automat. Control 38 (1993), 1300–1303 DOI 10.1109/9.233174 | MR 1235270 | Zbl 0784.93052
[15] Feintuch A., Khargonekar P., Tannenbaum A.: On the minimization problem for linear time–varying periodic controller. SIAM J. Control Optim. (1986), 1076–1085 DOI 10.1137/0324064 | MR 0854072
[16] Basar T., Bernhard P.: $H_\infty $ Optimal Control and Related Minimax Design Problems. Birkhäuser, Basel 1991 MR 1096294
[17] Colaneri P.: Continuous–time periodic systems in $H_2$ and $H_{\infty }$ – Part II: State–feedback problems. Kybernetika 36 (2000), No. 3 (to appear) MR 1773508
Partner of
EuDML logo