Previous |  Up |  Next

Article

Keywords:
multivariable nonlinear system; time delay
Summary:
Multivariable nonlinear systems with time delays are considered. The delays are supposed to be constant but not commensurate. The goal of this paper is to give a structure algorithm which displays some system invariants for this class of systems.
References:
[1] Conte G., Moog C. H., Perdon A. M.: Nonlinear Control Systems: An Algebraic Setting. (Lecture Notes in Control and Information Sciences 242.) Springer–Verlag, London 1999 MR 1687965 | Zbl 0920.93002
[2] Conte G., Perdon A. M.: The disturbance decoupling problem for systems over a ring. SIAM J. Control Optim. 33 (1995), 750–764 DOI 10.1137/S0363012992235638 | MR 1327237 | Zbl 0831.93011
[3] Hale J.: Theory of Functional Differential Equations. Springer Verlag, New York 1977 MR 0508721 | Zbl 1092.34500
[4] Iwai Z., Seborg D. E., Fisher D. G., Kobayashi N.: Decoupling of linear time variant systems with time delays in the control variable or state variable. Internat. J. Control 28 (1978), 869–888 DOI 10.1080/00207177808922503 | MR 0528369
[5] Malabre M., Rabah R.: Structure at infinity, model matching, and disturbance rejection for linear systems with delays. Kybernetika 29 (1993), 485–498 MR 1264881 | Zbl 0805.93008
[6] Márquez–Martínez L. A., Moog C. H., Velasco–Villa M.: The structure of nonlinear time–delay systems. In: 6th IEEE MCCS. Sardinia 1998
[7] Moog C. H., Castro–Linares R., Velasco–Villa M., Márquez–Martínez L. A.: The disturbance decoupling problem for time–delay systems. IEEE Trans. Automat. Control. To appear
[8] Singh S. N.: A modified algorithm for invertibility in nonlinear systems. IEEE Trans. Automat. Control 14 (1981), 595–598 DOI 10.1109/TAC.1981.1102657 | MR 0613595 | Zbl 0488.93026
[9] Tzafestas S. G., Paraskevopoulos P. N.: On the decoupling of multivariable control systems with time delay systems. Internat. J. Control 17 (1973), 2, 405–415 DOI 10.1080/00207177308932387 | MR 0314498
[10] Velasco–Villa M., Moog C. H.: Disturbance decoupling problem for time–delay nonlinear systems: dynamic approach. In: IFAC Conference on Control and Systems’s Structure. Nantes 1998
Partner of
EuDML logo