[1] Conte G., Moog C. H., Perdon A. M.:
Nonlinear Control Systems: An Algebraic Setting. (Lecture Notes in Control and Information Sciences 242.) Springer–Verlag, London 1999
MR 1687965 |
Zbl 0920.93002
[4] Iwai Z., Seborg D. E., Fisher D. G., Kobayashi N.:
Decoupling of linear time variant systems with time delays in the control variable or state variable. Internat. J. Control 28 (1978), 869–888
DOI 10.1080/00207177808922503 |
MR 0528369
[5] Malabre M., Rabah R.:
Structure at infinity, model matching, and disturbance rejection for linear systems with delays. Kybernetika 29 (1993), 485–498
MR 1264881 |
Zbl 0805.93008
[6] Márquez–Martínez L. A., Moog C. H., Velasco–Villa M.: The structure of nonlinear time–delay systems. In: 6th IEEE MCCS. Sardinia 1998
[7] Moog C. H., Castro–Linares R., Velasco–Villa M., Márquez–Martínez L. A.: The disturbance decoupling problem for time–delay systems. IEEE Trans. Automat. Control. To appear
[9] Tzafestas S. G., Paraskevopoulos P. N.:
On the decoupling of multivariable control systems with time delay systems. Internat. J. Control 17 (1973), 2, 405–415
DOI 10.1080/00207177308932387 |
MR 0314498
[10] Velasco–Villa M., Moog C. H.: Disturbance decoupling problem for time–delay nonlinear systems: dynamic approach. In: IFAC Conference on Control and Systems’s Structure. Nantes 1998