[1] Boyd S., Ghaoui L. El, Feron E., Balakrishnan V.:
Linear matrix inequalities in system and control theory. (SIAM Stud. Appl. Math. 15.) SIAM Publication, Philadelphia 1994
MR 1284712 |
Zbl 0816.93004
[2] Dugard L., (eds.) E. I. Verriest:
Stability and Control of Time–delay Systems. (Lecture Notes in Control and Inform. Sciences 228.) Springer–Verlag, London 1997
MR 1482570 |
Zbl 0901.00019
[3] Doyle J. C., Glover K., Khargonekar P. P., Francis B. A.:
State–space solutions to standard $H_2$ and $H_\infty $ control problems. IEEE Trans. Automat. Control 34 (1989), 831–847
DOI 10.1109/9.29425 |
MR 1004301
[6] Hale J. K., Lunel S. M. Verduyn: Introduction to Functional Differential Equations (Appl. Math. Sciences 99.), Springer–Verlag, Berlin 1991
[7] Ionescu V., Weiss M.:
Continuous and discrete-time Riccati theory: a Popov function approach. Linear Algebra Appl. 193 (1993), 173–209
MR 1240278
[8] Ionescu V., Oară C., Weiss M.:
Generalized Riccati Theory. Wiley, New York 1998
Zbl 0915.34024
[9] Ionescu V., Niculescu S. I., Woerdeman H.: On ${\mathcal L}_2$ memoryless control of time–delay systems. In: Proc. 36th IEEE Conf. Decision Control, San Diego 1997
[10] Ionescu V., Niculescu S. I., Dion J. M., Dugard L., Li H.:
Generalized Popov theory applied to state–delayed systems. In: Proc. 4th IFAC Conf. System Structure and Control, Nantes 1998
Zbl 0965.93083
[11] Ionescu V., Niculescu S. I., Dion J. M., Dugard L., Li H.:
Generalized Popov theory applied to state–delayed systems. In: Proc. 4th IFAC Conf. System Structure Control, Nantes 1998
Zbl 0965.93083
[12] Kolmanovskii V. B., Myshkis A.:
Applied Theory of Functional Differential Equations. Kluwer, Dordrecht 1992
MR 1256486
[13] Kolmanovskii V. B., Nosov V. R.:
Stability of Functional Differential Equations. Math. Science Engrg. 180, Academic Press, New York 1986
MR 0860947 |
Zbl 0593.34070
[14] Kolmanovskii V. B., Richard J. P.: Stability of some systems with distributed delays. European J. Automat. Control 31 (1997), 971–982
[15] Kolmanovskii V. B., Richard J. P., Tchangani A. Ph.: Stability of linear systems with discrete–plus–distributed delays: Application to some model transformations. In: Mathematical Theory of Networks and Systems (MTNS’98), Padova 1998
[16] Lee J. H., Kim S. W., Kwon W. H.:
Memoryless $H_\infty $ controllers for state delayed systems. IEEE Trans. Automat. Control 39 (1994), 159–162
DOI 10.1109/9.273356 |
MR 1258692
[17] Li H., Niculescu S. I., Dugard L., Dion J. M.: Robust ${\mathcal H}_\infty $ control for uncertain linear time–delay systems: A linear matrix inequality approach. Part I. In: Proc. 35th IEEE Conf. Decision Control, Kobe 1996
[18] Li H., Niculescu S. I., Dugard L., Dion J. M.: Robust ${\mathcal H}_\infty $ control for uncertain linear time–delay systems: A linear matrix inequality approach with guaranteed $\alpha $-stability. Part II. In: Proc. 35th IEEE Conf. Decision Control, Kobe 1996
[19] Niculescu S. I.:
${\mathcal H}_\infty $ memoryless control with an $\alpha $-stability constraint for time–delay systems: An LMI approach. IEEE Trans. Automat. Control 43 (1998), 739–743
DOI 10.1109/9.668850 |
MR 1618043
[20] Niculescu S. I.:
Time–delay systems. Qualitative aspects on stability and stabilization (in French), Diderot Eds., ‘Nouveaux Essais’ Series, Paris 1997
Zbl 1235.93006
[21] Niculescu S. I., Ionescu V.:
On delay–independent stability criteria: A matrix pencil approach. IMA J. Math. Control Inform. 1997
MR 1467584 |
Zbl 0886.93056
[22] Niculescu S. I., Souza C. E. de, Dion J. M., Dugard L.: Robust ${\mathcal H}_\infty $ memoryless control for uncertain linear systems with time–varying delay. In: 3rd European Control Conf., Rome 1995, pp. 1814–1818
[23] Niculescu S. I., Ionescu V., Woerdeman H.: On the Popov theory for some classes of time-delay systems: A matrix pencil approach. In: MTNS’98, Padova 1998
[24] Niculescu S. I., Verriest E. I., Dugard L., Dion J. M.:
Stability and robust stability of time–delay systems: A guided tour. In: Stability and Control of Time–Delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes in Control and Inform. Sciences 228). Springer–Verlag, London 1997, pp. 1–71
MR 1482571
[28] Răsvan V.: Absolute Stability of Time–Delay Control Systems (in Russian). Nauka, Moscow 1983
[29] Richard J.-P.: Some trends and tools for the study of time delay systems. In: CESA’98 IMACS–IEEE Multiconference, Hammamet 1998, pp. 27–43
[30] Xie L., Souza C. E. de: Robust stabilization and disturbance attenuation for uncertain delay system. In: Proc. 2nd European Control Conf., Groningen 1993, pp. 667–672