Previous |  Up |  Next

Article

Keywords:
Popov generalized theory; delay system; memoryless state feedback control
Summary:
This paper focuses on the Popov generalized theory for a class of some linear systems including discrete and distributed delays. Sufficient conditions for stabilizing such systems as well as for coerciveness of an appropriate quadratic cost are developed. The obtained results are applied for the design of a memoryless state feedback control law which guarantees the (exponential) closed-loop stability with an ${\cal L}_2$ norm bound constraint on disturbance attenuation. Note that the proposed results extend similar ones proposed by some of the authors [inddl:98].
References:
[1] Boyd S., Ghaoui L. El, Feron E., Balakrishnan V.: Linear matrix inequalities in system and control theory. (SIAM Stud. Appl. Math. 15.) SIAM Publication, Philadelphia 1994 MR 1284712 | Zbl 0816.93004
[2] Dugard L., (eds.) E. I. Verriest: Stability and Control of Time–delay Systems. (Lecture Notes in Control and Inform. Sciences 228.) Springer–Verlag, London 1997 MR 1482570 | Zbl 0901.00019
[3] Doyle J. C., Glover K., Khargonekar P. P., Francis B. A.: State–space solutions to standard $H_2$ and $H_\infty $ control problems. IEEE Trans. Automat. Control 34 (1989), 831–847 DOI 10.1109/9.29425 | MR 1004301
[4] Halanay A., Ionescu V.: Generalized discrete–time Popov–Yakubovich theory. Systems Control Lett. 20 (1993), 1–6 DOI 10.1016/0167-6911(93)90080-P | MR 1198466 | Zbl 0778.93097
[5] Halanay A., Ionescu V.: Time–Varying Discrete Linear Systems. Birkhäuser, Basel 1994 MR 1269542 | Zbl 0799.93035
[6] Hale J. K., Lunel S. M. Verduyn: Introduction to Functional Differential Equations (Appl. Math. Sciences 99.), Springer–Verlag, Berlin 1991
[7] Ionescu V., Weiss M.: Continuous and discrete-time Riccati theory: a Popov function approach. Linear Algebra Appl. 193 (1993), 173–209 MR 1240278
[8] Ionescu V., Oară C., Weiss M.: Generalized Riccati Theory. Wiley, New York 1998 Zbl 0915.34024
[9] Ionescu V., Niculescu S. I., Woerdeman H.: On ${\mathcal L}_2$ memoryless control of time–delay systems. In: Proc. 36th IEEE Conf. Decision Control, San Diego 1997
[10] Ionescu V., Niculescu S. I., Dion J. M., Dugard L., Li H.: Generalized Popov theory applied to state–delayed systems. In: Proc. 4th IFAC Conf. System Structure and Control, Nantes 1998 Zbl 0965.93083
[11] Ionescu V., Niculescu S. I., Dion J. M., Dugard L., Li H.: Generalized Popov theory applied to state–delayed systems. In: Proc. 4th IFAC Conf. System Structure Control, Nantes 1998 Zbl 0965.93083
[12] Kolmanovskii V. B., Myshkis A.: Applied Theory of Functional Differential Equations. Kluwer, Dordrecht 1992 MR 1256486
[13] Kolmanovskii V. B., Nosov V. R.: Stability of Functional Differential Equations. Math. Science Engrg. 180, Academic Press, New York 1986 MR 0860947 | Zbl 0593.34070
[14] Kolmanovskii V. B., Richard J. P.: Stability of some systems with distributed delays. European J. Automat. Control 31 (1997), 971–982
[15] Kolmanovskii V. B., Richard J. P., Tchangani A. Ph.: Stability of linear systems with discrete–plus–distributed delays: Application to some model transformations. In: Mathematical Theory of Networks and Systems (MTNS’98), Padova 1998
[16] Lee J. H., Kim S. W., Kwon W. H.: Memoryless $H_\infty $ controllers for state delayed systems. IEEE Trans. Automat. Control 39 (1994), 159–162 DOI 10.1109/9.273356 | MR 1258692
[17] Li H., Niculescu S. I., Dugard L., Dion J. M.: Robust ${\mathcal H}_\infty $ control for uncertain linear time–delay systems: A linear matrix inequality approach. Part I. In: Proc. 35th IEEE Conf. Decision Control, Kobe 1996
[18] Li H., Niculescu S. I., Dugard L., Dion J. M.: Robust ${\mathcal H}_\infty $ control for uncertain linear time–delay systems: A linear matrix inequality approach with guaranteed $\alpha $-stability. Part II. In: Proc. 35th IEEE Conf. Decision Control, Kobe 1996
[19] Niculescu S. I.: ${\mathcal H}_\infty $ memoryless control with an $\alpha $-stability constraint for time–delay systems: An LMI approach. IEEE Trans. Automat. Control 43 (1998), 739–743 DOI 10.1109/9.668850 | MR 1618043
[20] Niculescu S. I.: Time–delay systems. Qualitative aspects on stability and stabilization (in French), Diderot Eds., ‘Nouveaux Essais’ Series, Paris 1997 Zbl 1235.93006
[21] Niculescu S. I., Ionescu V.: On delay–independent stability criteria: A matrix pencil approach. IMA J. Math. Control Inform. 1997 MR 1467584 | Zbl 0886.93056
[22] Niculescu S. I., Souza C. E. de, Dion J. M., Dugard L.: Robust ${\mathcal H}_\infty $ memoryless control for uncertain linear systems with time–varying delay. In: 3rd European Control Conf., Rome 1995, pp. 1814–1818
[23] Niculescu S. I., Ionescu V., Woerdeman H.: On the Popov theory for some classes of time-delay systems: A matrix pencil approach. In: MTNS’98, Padova 1998
[24] Niculescu S. I., Verriest E. I., Dugard L., Dion J. M.: Stability and robust stability of time–delay systems: A guided tour. In: Stability and Control of Time–Delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes in Control and Inform. Sciences 228). Springer–Verlag, London 1997, pp. 1–71 MR 1482571
[25] Noldus E.: Stabilization of a class of distributional convolution equations. Internat. J. Control 41 (1985), 947–960 DOI 10.1080/0020718508961174 | MR 0792919 | Zbl 0566.93048
[26] Oară C.: Proper deflating subspaces: properties, algorithmes and applications. Numer. Algorithms 7 (1994), 355–377 DOI 10.1007/BF02140690 | MR 1283105
[28] Răsvan V.: Absolute Stability of Time–Delay Control Systems (in Russian). Nauka, Moscow 1983
[29] Richard J.-P.: Some trends and tools for the study of time delay systems. In: CESA’98 IMACS–IEEE Multiconference, Hammamet 1998, pp. 27–43
[30] Xie L., Souza C. E. de: Robust stabilization and disturbance attenuation for uncertain delay system. In: Proc. 2nd European Control Conf., Groningen 1993, pp. 667–672
Partner of
EuDML logo