Previous |  Up |  Next

Article

Keywords:
linear delay system; static state feedback; decoupling problem; disturbance
Summary:
The disturbance decoupling problem is studied for linear delay systems. The structural approach is used to design a decoupling precompensator. The realization of the given precompensator by static state feedback is studied. Using various structural and geometric tools, a detailed description of the feedback is given, in particular, derivative of the delayed disturbance can be needed in the realization of the precompensator.
References:
[1] Hautus M. L. J.: The formal Laplace transform for smooth linear systems. In: Proc. of Internat. Symposium on Mathematical Systems Theory, Udine 1975 (Lecture Notes in Economics and Mathematical Systems 131), Springer–Verlag, Berlin pp. 29–47 MR 0682787
[2] Malabre M., Rabah R.: On infinite zeros for infinite dimensional systems. In: Progress in Systems and Control Theory 3, Realiz. Model. in Systems Theory, Vol. 1, Birkhaüser, Boston 1990, pp. 19–206 MR 1115331
[3] Malabre M., Rabah R.: Structure at infinity, model matching and disturbance rejection for linear systems with delays. Kybernetika 29 (1993), 5, 485–498 MR 1264881 | Zbl 0805.93008
[4] Moog C.: Inversion, découplage, poursuite de modèle des systèmes non linéaires. PhD Thesis, ENSM, Nantes 1987
[5] Picard P., Lafay J.-F., Kučera V.: Model matching for linear systems with delays. In: Proc. of 13th IFAC Congress, San Francisco 1996, Vol. D, pp. 183–188
[6] Pandolfi L.: Disturbance decoupling and invariant subspaces for delay systems. Appl. Math. Optim. 14 (1986), 55–72 DOI 10.1007/BF01442228 | MR 0826852 | Zbl 0587.93039
[7] Rabah R.: Structural properties and controllability for delay systems of neutral type. In: Proc. of the IFAC Conference on System Structure and Control, Nantes 1995, pp. 354–359
[8] Rabah R., Malabre M.: Structure at infinity for delay systems revisited. In: Proc. of IMACS and IEEE–SMC Multiconference CESA’96, Symposium on Modelling, Analysis and Simulation, Lille 1996, pp. 87–90
[9] Rabah R., Malabre M.: A note on decoupling for linear infinite dimensional systems. In: Proc. 4th IFAC Conf. on System Structure and Control, Bucharest 1997, pp. 78–83
[10] Rabah R., Malabre M.: The structure at infinity of linear delay systems and the row–by–row decoupling problem. In: Proc. of 7th IEEE Mediterranean Conference on Control and Automation, Haifa 1999, pp. 1845–1854
[11] Sename O., Rabah R., Lafay J.-F.: Decoupling without prediction of linear systems with delays: a structural approach. Systems Control Lett. 25 (1995), 387–395 DOI 10.1016/0167-6911(94)00086-B | MR 1343224 | Zbl 0877.93053
[12] Silverman L. M., Kitapçi A.: System structure at infinity. In: Colloque National CNRS, Développement et Utilisation d’Outils et Modèles Mathématiques en Automatique des Systèmes et Traitement du Signal, Belle–Ile 1983, Ed. CNRS, Vol. 3, pp. 413–424 MR 0733951 | Zbl 0529.93018
[13] Tsoi A. C.: Recent advances in the algebraic system theory of delay differential equations. In: Recent Theoretical Developments in Control (M. J. Gregson, ed.), Academic Press, New York 1978, pp. 67–127 MR 0534622 | Zbl 0417.93003
[14] Wonham W. M.: Linear Multivariable Control: A Geometric Approach. Third edition. Springer–Verlag, New York 1985 MR 0770574 | Zbl 0609.93001
Partner of
EuDML logo