Previous |  Up |  Next

Article

Keywords:
predictive control; LQ controller; discrete-time control system; control design; Youla-Kucera parametrization
Summary:
A single variable controller is developed in the predictive control framework based upon minimisation of the LQ criterion with infinite output and control horizons. The infinite version of the predictive cost function results in better stability properties of the controller and still enables to incorporate constraints into the control design. The constrained controller consists of two parts: time-invariant nominal LQ controller and time-variant part given by Youla–Kučera parametrisation of all stabilising controllers.
References:
[1] Clarke D. W., Mohtadi, C., Tuffs P. S.: Generalized predictive control. Part I. The basic algorithm. Automatica 23 (1987), 2, 137–148 DOI 10.1016/0005-1098(87)90087-2 | Zbl 0621.93033
[2] Clarke D. W., Mohtadi, C., Tuffs P. S.: Generalized predictive control. Part II: Extensions and interpretations. Automatica 23 (1987), 2, 149–160 DOI 10.1016/0005-1098(87)90088-4 | Zbl 0621.93033
[3] Clarke D. W., Scattolini R.: Constrained receding–horizon predictive control. IEE Proc. D 138 (1991), 4, 347–354 DOI 10.1049/ip-d.1991.0047 | Zbl 0743.93063
[4] Fikar M., Engell S.: Receding horizon predictive control based upon Youla – Kučera parametrization. European J. Control 3 (1997), 4, 304–316 DOI 10.1016/S0947-3580(97)70088-8
[5] Horn R. A., Johnson C. R.: Matrix Analysis. Cambridge University Press 1985 MR 0832183 | Zbl 0801.15001
[6] Hunt K. J., Šebek M.: Implied polynomial matrix equations in multivariable stochastic optimal control. Automatica 27 (1991), 2, 395–398 DOI 10.1016/0005-1098(91)90088-J | MR 1095430 | Zbl 0729.93083
[7] Kučera V.: Discrete Linear Control: The Polynomial Equation Approach. Wiley, Chichester 1979 MR 0573447 | Zbl 0432.93001
[8] Kučera V.: Analysis and Design of Discrete Linear Control Systems. Prentice Hall, Englewood Cliffs, N. J. 1991 MR 1182311 | Zbl 0762.93060
[9] McIntosh A. R., Shah S. L., Fisher D. G.: Analysis and tuning of adaptive generalized predictive control. Canad. J. Chem. Engrg. 69 (1991), 97–110 DOI 10.1002/cjce.5450690112
[10] Middleton R., Goodwin G. C.: Digital Control and Estimation. A Unified Approach. Prentice Hall, Englewood Cliffs, N. J. 1990 Zbl 0754.93053
[11] Mosca E., Zhang J.: Stable redesign of predictive control. Automatica 28 (1992), 1229–1233 DOI 10.1016/0005-1098(92)90065-N | MR 1196787 | Zbl 0775.93056
[12] Rawlings J. B., Muske K. R.: The stability of constrained receding horizon control. IEEE Trans. Automat. Control 38 (1993), 10, 1512–1516 DOI 10.1109/9.241565 | MR 1242898 | Zbl 0790.93019
[13] Rossiter J. A., Gossner J. R., Kouvaritakis B.: Infinite horizon stable predictive control. IEEE Trans. Automat. Control 41 (1996), 10, 1522–1527 DOI 10.1109/9.539437 | MR 1413388 | Zbl 0863.93037
[14] Rossiter J. A., Kouvaritakis B.: Constrained stable generalised predictive control. IEE Proc. D 140 (1993), 4, 243–254 Zbl 0786.93005
[15] Rossiter J. A., Kouvaritakis, B., Gossner J. R.: Feasibility and stability results for constrained stable predictive control. Automatica 31 (1995), 3, 863–877 DOI 10.1016/0005-1098(94)00166-G | MR 1337335
[16] Scokaert P. O. M., Clarke D. W.: Stabilizing properties of constrained predictive control. IEE Proc. – Control Theory Appl. 141 (1994), 5, 295–304
[17] Scokaert P. O. M., Rawlings J. B.: Infinite horizon linear quadratic control with constraints. In: 13th Triennal World Congress IFAC, San Francisco 1996, Volume M, pp. 109–114
[18] Šebek M.: Direct polynomial approach to discrete–time stochastic tracking. Problems Control Inform. Theory 12 (1983), 293–302 MR 0729282 | Zbl 0517.93067
[19] Zafiriou E., Chiou H. W.: On the dynamic resiliency of constrained processes. Comput. Chem. Engrg. 20 (1996), 4, 347–355 DOI 10.1016/0098-1354(95)00038-0
[20] Zheng A., Morari M.: Stability of model predictive control with mixed constraints. IEEE Trans. Automat. Control 40 (1995), 10, 1818–1823 DOI 10.1109/9.467664 | MR 1354529 | Zbl 0846.93075
Partner of
EuDML logo