Previous |  Up |  Next

Article

Keywords:
decentralized stabilization; large scale system; bi-coprime factorized plant; control theory
Summary:
In this paper, a necessary and sufficient condition for decentralized stabilizability for expanding construction of large scale systems is established which involves the computation of blocking zeros and testing a rational function for sign changes at these blocking zeros. Results for the scalar as also multivariable cases are presented and a systematic procedure for designing the stabilizing controller is also outlined. The proposed theory is applicable to a wider class of systems than those for which existing methods can be used. There are a few matrix identities established in this paper which are of independent interest in Control Theory.
References:
[1] Davison E. J., Ózgüner U.: The expanding system problem. Systems Control Lett. 1 (1982), 255–260 DOI 10.1016/S0167-6911(82)80008-X | MR 0670208
[2] Desoer C. A., Liu R. W., Murray J., Saeks R.: Feedback system design: The fractional representation approach to analysis and synthesis. IEEE Trans. Automat. Control 25 (1980), 399–412 DOI 10.1109/TAC.1980.1102374 | MR 0571749 | Zbl 0442.93024
[3] Francis B. A.: A Course in $H_\infty $ Control Theory. Springer–Verlag, Berlin 1987
[4] Ikeda M.: Decentralized control of large scale systems. In: Three Decades of Mathematical System Theory: A Collection of Surveys on the Occasion of the Fiftieth Birthday of Jan C. Willems (H. Nijmeijer and J. M. Schumacher, eds.), Springer–Verlag, Berlin 1989 MR 1025792 | Zbl 0683.93009
[5] Ikeda M., Siljak D. D.: On decentrally stabilizable large–scale systems. Automatica 16 (1980), 331–334 DOI 10.1016/0005-1098(80)90042-4 | MR 0575188 | Zbl 0432.93004
[6] Saeks R., DeCarlo R. A.: Interconnected Dynamical Systems. Marcel Dekker, New York 1981
[7] Siljak D. D.: Large Scale Dynamic Systems: Stability and Structure. North Holland, New York 1978 MR 0595867 | Zbl 0384.93002
[8] Tan X. L., Ikeda M.: Decentralized stabilization for expanding construction of large scale systems. IEEE Trans. Automat. Control 35 (1990), 644–651 DOI 10.1109/9.53543 | MR 1055494 | Zbl 0800.93065
[9] Vidyasagar M.: Control System Synthesis: A Factorization Approach. MIT Press, Cambridge, MA 1985 MR 0787045 | Zbl 0655.93001
[10] Youla D. C., Bongiorno J. J., Lu C. N.: Single loop feedback stabilization of linear multivariable dynamical plants. Automatica 10 (1974), 155–173 DOI 10.1016/0005-1098(74)90021-1 | MR 0490293 | Zbl 0276.93036
Partner of
EuDML logo