Previous |  Up |  Next

Article

Keywords:
fuzzy topological space; proto-metrizable topological space
Summary:
In this paper we define for fuzzy topological spaces a notion corresponding to proto-metrizable topological spaces. We obtain some properties of these fuzzy topological spaces, particularly we give relations with non-archimedean, and metrizable fuzzy topological spaces.
References:
[1] Ajmal N., Kohli J. K.: Connectedness in fuzzy topological spaces. Fuzzy Sets and Systems 31 (1989), 369–388 DOI 10.1016/0165-0114(89)90207-8 | MR 1009267 | Zbl 0684.54004
[2] Bülbül A., Warner M. W.: On the goodness of some types of fuzzy paracompactness. Fuzzy Sets and Systems 55 (1993), 187–191 DOI 10.1016/0165-0114(93)90131-Z | MR 1215139 | Zbl 0809.54007
[3] Eklund P., Gähler W.: Basic notions for fuzzy topology I. Fuzzy Sets and Systems 26 (1988), 333–356 MR 0942329 | Zbl 0645.54008
[4] El–Monsef M. E. A., Zeyada F. M., El–Deeb S. N., Hanafy I. M.: Good extensions of paracompactness. Math. Japon. 37 (1992), 195–200 MR 1148533 | Zbl 0772.54007
[5] Fuller L. B.: Trees and proto–metrizable spaces. Pacific J. Math. 104 (1983), 55–75 DOI 10.2140/pjm.1983.104.55 | MR 0683728 | Zbl 0386.54020
[6] Gruenhage G., Zenor P.: Proto metrizable spaces. Houston J. Math. 3 (1977), 47–53 MR 0442895 | Zbl 0346.54012
[7] Lowen R.: A comparison of different compactness notions in fuzzy topological spaces. J. Math. Anal. Appl. 64 (1978), 446–454 DOI 10.1016/0022-247X(78)90052-5 | MR 0497443 | Zbl 0381.54004
[8] Luo M.-K.: Paracompactness in fuzzy topological spaces. J. Math. Anal. Appl. 130 (1988), 55–77 DOI 10.1016/0022-247X(88)90386-1 | MR 0926828 | Zbl 0642.54006
[9] Lupiáñez F. G.: Non–archimedean fuzzy topological spaces. J. Fuzzy Math. 4 (1996), 559–565 MR 1410629 | Zbl 0943.54007
[10] Martin H. W.: Weakly induced fuzzy topological spaces. J. Math. Anal. Appl. 78 (1980), 634–639 DOI 10.1016/0022-247X(80)90170-5 | MR 0601558 | Zbl 0463.54007
[11] Nyikos P.: Some surprising base properties in Topology, Studies in topology. In: Proc. Conf. Univ. North Carolina, Charlotte, NC 1974, Academic Press, New York 1975, pp. 427–450 MR 0367940
[12] Nyikos P.: Some surprising base properties in Topology II. In: Set–theoretic Topology, Inst. Medicine and Mathematics, Ohio Univ., Academic Press, New York 1977, pp. 277–305 MR 0442889 | Zbl 0397.54004
Partner of
EuDML logo