Previous |  Up |  Next

Article

Keywords:
mathematical programs; optimality condition; equilibrium constraints
Summary:
The paper deals with mathematical programs, where parameter-dependent nonlinear complementarity problems arise as side constraints. Using the generalized differential calculus for nonsmooth and set-valued mappings due to B. Mordukhovich, we compute the so-called coderivative of the map assigning the parameter the (set of) solutions to the respective complementarity problem. This enables, in particular, to derive useful 1st-order necessary optimality conditions, provided the complementarity problem is strongly regular at the solution.
References:
[1] Anandalingam G., (eds.) T. Friesz: Hierarchical optimization. Ann. Oper. Res. 34 (1992) MR 1150995 | Zbl 0751.90067
[2] Aubin J.-P., Frankowska H.: Set–Valued Analysis. Birkhäuser, Boston 1990 MR 1048347 | Zbl 1168.49014
[3] Clarke F. H.: Optimization and Nonsmooth Analysis. Wiley, New York 1983 MR 0709590 | Zbl 0696.49002
[4] Dempe S.: A necessary and sufficient optimality condition for bilevel programming problems. Optimization 25 (1992), 341–354 DOI 10.1080/02331939208843831 | MR 1235324
[5] Kočvara M., Outrata J. V.: On the solution of optimum design problems with variational inequalities. In: Recent Advances in Nonsmooth Optimization (D. Du, L. Qi and R. Womersley, eds.), World Scientific, Singapore 1995, pp. 172–192 MR 1460001 | Zbl 0952.49034
[6] Kočvara M., Outrata J. V.: A nonsmooth approach to optimization problems with equilibrium constraints. In: Proc. of the ICCP (M. Ferris and J.-S. Pang, eds.), SIAM 1997, pp. 148–164 MR 1445078 | Zbl 0887.90168
[7] Luo Z.-Q., Pang J.-S., Ralph D., Wu S.-Q.: Exact penalization and stationary conditions of mathematical programs with equilibrium constraints. Math. Programming 75 (1996), 19–76 MR 1415093
[8] Luo Z.-Q., Pang J.-S., Ralph D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge 1996 MR 1419501 | Zbl 1139.90003
[9] B. S. : Approximation Methods in Problems of Optimization and Control. Nauka, Moscow 1988. (In Russian; English translation to appear in Wiley–Interscience) MR 0945143 | Zbl 0643.49001
[10] B. S. : Sensitivity analysis in nonsmooth optimization. In: Theoretical Aspects of Industrial Design (D. A. Field, and V. Komkov, eds.), SIAM Publications, Philadelphia 1992, pp. 32–46 MR 1157413 | Zbl 0769.90075
[11] B. S. : Generalized differential calculus for nonsmooth and set–valued mappings. J. Math. Anal. Appl. 183 (1994), 250–288 DOI 10.1006/jmaa.1994.1144 | MR 1273445 | Zbl 0807.49016
[12] B. S. : Lipschitzian stability of constraint systems and generalized equations. Nonlinear Analysis, Theory, Methods & Applications 22 (1994), 173–206 DOI 10.1016/0362-546X(94)90033-7 | MR 1258955 | Zbl 0805.93044
[13] Murty K. G.: Linear Programming. Wiley, New York 1983 MR 0720547 | Zbl 0691.90051
[14] Murty K. G.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin 1988 MR 0949214 | Zbl 0634.90037
[15] Outrata J. V.: On optimization problems with variational inequality constraints. SIAM J. Optimization 4 (1994), 340–357 DOI 10.1137/0804019 | MR 1273763 | Zbl 0826.90114
[16] Outrata J. V.: Optimality conditions for a class of mathematical programs with equilibrium constraints, to appea.
[17] Pang J.-S., Ralph D.: Piecewise smoothness, local invertibility, and parametric analysis of normal maps. Math. Oper. Res. 21 (1996), 401–426 DOI 10.1287/moor.21.2.401 | MR 1397221 | Zbl 0857.90122
[18] Robinson S. M.: Strongly regular generalized equations. Math. Oper. Res. 5 (1980), 43–62 DOI 10.1287/moor.5.1.43 | MR 0561153 | Zbl 0437.90094
[19] Scholtes S.: Introduction to Piecewise Differentiable Equations. Habil. Thesis, University of Karlsruhe, 1994
[20] Treiman J. S.: General optimality conditions for bi-level optimization problems. Preprint
[21] Ye J. J., Zhu D. L.: Optimality conditions for bilevel programming problems. Optimization 33 (1995), 9–27 DOI 10.1080/02331939508844060 | MR 1333152 | Zbl 0820.65032
[22] Ye J. J., Zhu D. L., Zhu Q. J.: Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optimization 7 (1997), 481–507 DOI 10.1137/S1052623493257344 | MR 1443630 | Zbl 0873.49018
[23] Ye J. J., Ye X. Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22 (1997), 977–997 DOI 10.1287/moor.22.4.977 | MR 1484692 | Zbl 1088.90042
[24] Zhang R.: Problems of hierarchical optimization in finite dimensions. SIAM J. Optimization 4 (1994), 521–536 DOI 10.1137/0804029 | MR 1287814 | Zbl 0819.90107
Partner of
EuDML logo