[5] Kočvara M., Outrata J. V.:
On the solution of optimum design problems with variational inequalities. In: Recent Advances in Nonsmooth Optimization (D. Du, L. Qi and R. Womersley, eds.), World Scientific, Singapore 1995, pp. 172–192
MR 1460001 |
Zbl 0952.49034
[6] Kočvara M., Outrata J. V.:
A nonsmooth approach to optimization problems with equilibrium constraints. In: Proc. of the ICCP (M. Ferris and J.-S. Pang, eds.), SIAM 1997, pp. 148–164
MR 1445078 |
Zbl 0887.90168
[7] Luo Z.-Q., Pang J.-S., Ralph D., Wu S.-Q.:
Exact penalization and stationary conditions of mathematical programs with equilibrium constraints. Math. Programming 75 (1996), 19–76
MR 1415093
[8] Luo Z.-Q., Pang J.-S., Ralph D.:
Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge 1996
MR 1419501 |
Zbl 1139.90003
[9] B. S. :
Approximation Methods in Problems of Optimization and Control. Nauka, Moscow 1988. (In Russian; English translation to appear in Wiley–Interscience)
MR 0945143 |
Zbl 0643.49001
[10] B. S. :
Sensitivity analysis in nonsmooth optimization. In: Theoretical Aspects of Industrial Design (D. A. Field, and V. Komkov, eds.), SIAM Publications, Philadelphia 1992, pp. 32–46
MR 1157413 |
Zbl 0769.90075
[14] Murty K. G.:
Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin 1988
MR 0949214 |
Zbl 0634.90037
[16] Outrata J. V.: Optimality conditions for a class of mathematical programs with equilibrium constraints, to appea.
[19] Scholtes S.: Introduction to Piecewise Differentiable Equations. Habil. Thesis, University of Karlsruhe, 1994
[20] Treiman J. S.: General optimality conditions for bi-level optimization problems. Preprint