Previous |  Up |  Next

Article

Keywords:
discrete time auto regressive (AR) model; boundary conditions; finite and infinite spectral structure of the polynomial matrix
Summary:
In this paper we investigate the behavior of the discrete time AR (Auto Regressive) representations over a finite time interval, in terms of the finite and infinite spectral structure of the polynomial matrix involved in the AR-equation. A boundary mapping equation and a closed formula for the determination of the solution, in terms of the boundary conditions, are also gived.
References:
[1] Luenberger D. G.: Dynamic equations in descriptor form. IEEE Trans. Automat. Control 22 (1977), 3, 312–321 DOI 10.1109/TAC.1977.1101502 | MR 0479482 | Zbl 0354.93007
[2] Luenberger D. G.: Boundary recursion for descriptor variable systems. IEEE Trans. Automat. Control 34 (1989), 3, 287–292 DOI 10.1109/9.16418 | MR 0980358 | Zbl 0674.93043
[3] Lewis F. L.: Descriptor systems: Decomposition into forward and backward subsystems. IEEE Trans. Automat. Control 29 (1984), 2, 167–170 DOI 10.1109/TAC.1984.1103467 | MR 0736914 | Zbl 0534.93013
[4] Lewis F. L., Mertzios B. G.: On the analysis of discrete linear time–invariant singular systems. IEEE Trans. Automat. Control 35 (1990), 4, 506–511 DOI 10.1109/9.52316 | MR 1048009 | Zbl 0705.93058
[5] Lewis F. L.: A survey of linear singular systems. Circuits Systems Signal Process. 5 (1986), 1, 3–36 MR 0893725 | Zbl 0613.93029
[6] Nikoukhah R., Willsky A., Levy B. C.: Boundary–value descriptor systems: well–posedness, reachability and observability. Internat. J. Control 46 (1987), 1715–1737 DOI 10.1080/00207178708934005 | MR 0917179 | Zbl 0636.93055
[7] Gantmacher F. R.: Matrix Theory. Chelsea, New York 1971
[8] Gohberg I., Lancaster P., Rodman L.: Matrix Polynomials. Academic Press, New York 1982 MR 0662418 | Zbl 1170.15300
[9] Gohberg I., Kaashoek M. A., Lerer L., Rodman L.: Common multiples and common divisors of matrix polynomials. I. Spectral method. Indiana J. Math. 30 (1981), 321–356 DOI 10.1512/iumj.1981.30.30027 | MR 0611224 | Zbl 0449.15015
[10] Gohberg I., Kaashoek M. A., Lerer L., Rodman L.: Common multiples and common divisors of matrix polynomials. II. Van der Monde and resultant matrices. Linear and Multilinear Algebra 12 (1982), 159–203 DOI 10.1080/03081088208817483 | MR 0678825 | Zbl 0496.15014
[11] Vardulakis A. I. G.: Linear Multivariable Control – Algebraic Analysis and Synthesis Methods. Wiley, New York 1991 MR 1104222 | Zbl 0751.93002
[12] Willems J. C.: Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control 36 (1991), 3, 259–294 DOI 10.1109/9.73561 | MR 1092818 | Zbl 0737.93004
Partner of
EuDML logo