Previous |  Up |  Next

Article

Keywords:
nonconvex variational problem; Sobolev space; Young measure; convex compactification theory; Euler-Lagrange equation; Weierstrass condition; minimum-energy type; optimality conditions
Summary:
The scalar nonconvex variational problems of the minimum-energy type on Sobolev spaces are studied. As the Euler–Lagrange equation dramatically looses selectivity when extended in terms of the Young measures, the correct optimality conditions are sought by means of the convex compactification theory. It turns out that these conditions basically combine one part from the Euler–Lagrange equation with one part from the Weierstrass condition.
References:
[1] Aubin J.-P., Ekeland I.: Applied Nonlinear Analysis. Wiley, New York 1984 MR 0749753 | Zbl 1115.47049
[2] Aubin J.-P., Frankowska H.: Set-valued Analysis. Birkhäuser 1990 MR 1048347 | Zbl 1168.49014
[3] Ball J. M., James R. D.: Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1988), 13–52 DOI 10.1007/BF00281246 | MR 0906132
[4] Ball J. M., James R. D.: Proposed experimental tests of a theory of fine microstructure and the two–well problem. Philos. Trans. Roy. Soc. London Ser. A 338 (1992), 389–450 DOI 10.1098/rsta.1992.0013 | Zbl 0758.73009
[5] Chipot M., Kinderlehrer D.: Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103 (1988), 237–277 DOI 10.1007/BF00251759 | MR 0955934 | Zbl 0673.73012
[6] DiPerna R. J., Majda A. J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Physics 108 (1987), 667–689 DOI 10.1007/BF01214424 | MR 0877643 | Zbl 0626.35059
[7] Gamkrelidze R. V.: Principles of Optimal Control Theory (in Russian). Tbilisi Univ. Press, Tbilisi 1977. (English Translation: Plenum Press, New York 1978) MR 0686793
[8] Hoffmann K.-H., Roubíček T.: Optimal control of a fine structure. Appl. Math. Optim. 30 (1994), 113–126 DOI 10.1007/BF01189449 | MR 1284322 | Zbl 0812.49009
[9] Ioffe A. D., Tihomirov V. M.: Extensions of variational problems. Trans. Moscow Math. Soc. 18 (1968), 207–273 MR 0254702
[10] Kinderlehrer D., Pedregal P.: Characterizations of Young measures generated by gradients. Arch. Rational Mech. Anal. 115 (1991), 329–365 DOI 10.1007/BF00375279 | MR 1120852 | Zbl 0754.49020
[11] Kinderlehrer D., Pedregal P.: Weak convergence of integrands and the Young measure representation. SIAM J. Math. Anal. 23 (1992), 1–19 DOI 10.1137/0523001 | MR 1145159 | Zbl 0757.49014
[12] Kinderlehrer D., Pedregal P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994), 59–90 DOI 10.1007/BF02921593 | MR 1274138 | Zbl 0828.46031
[13] Kružík M., Roubíček T.: Explicit characterization of $L^p$-Young measures. J. Math. Anal. Appl. 198 (1996), 830–843 DOI 10.1006/jmaa.1996.0115 | MR 1377827
[14] McShane E. J.: Necessary conditions in the generalized-curve problems of the calculus of variations. Duke Math. J. 7 (1940), 1–27 MR 0003478
[15] Roubíček T.: Convex compactifications and special extensions of optimization problems. Nonlinear Anal. 16 (1991), 1117–1126 DOI 10.1016/0362-546X(91)90199-B | MR 1111622
[16] Roubíček T.: A note about optimality conditions for variational problems with rapidly oscillating solutions. In: Progress in Partial Differential Equations: Calculus of Variations, Applications (C. Bandle et al, eds., Pitman Res. Notes in Math. Sci. 267), Longmann, Harlow, Essex 1992, pp. 312–314 MR 1194208
[17] Roubíček T.: Nonconcentrating generalized Young functionals. Comment. Math. Univ. Carolin. 38 (1997), 91–99 MR 1455472
[18] Roubíček T., Hoffmann K.-H.: About the concept of measure–valued solutions to distributed parameter systems. Math. Methods Appl. Sci. 18 (1995), 671–685 DOI 10.1002/mma.1670180902 | MR 1339929 | Zbl 0828.35024
[19] Roubíček T., Hoffmann K.-H.: Theory of convex local compactifications with applications to Lebesgue spaces. Nonlinear Anal. 25 (1995), 607–628 DOI 10.1016/0362-546X(94)00150-G | MR 1338806
[20] Weierstraß K.: Mathematische Werke, Teil VII “Vorlesungen über Variationsrechnung”. (Nachdr. d. Ausg., Leipzig, 1927) Georg Olms, Verlagsbuchhandlung, Hildesheim 1967
[21] Young L. C.: Necessary conditions in the calculus of variations. Acta Math. 69 (1938), 239–258 DOI 10.1007/BF02547714 | MR 1555440 | Zbl 0019.26702
[22] Young L. C.: Lectures on the Calculus of Variations and Optimal Control Theory. W. B. Saunders, Philadelphia 1969 MR 0259704 | Zbl 0289.49003
[23] Zeidler E.: Nonlinear Functional Analysis and its Applications III. Variational Methods and Optimization. Springer, New York 1985 MR 0768749 | Zbl 0583.47051
Partner of
EuDML logo