Previous |  Up |  Next

Article

Keywords:
design technique; linear system; feedback stabilization; constant output-feedback controller; control weighting matrices; aircraft stabilization
Summary:
A design technique for the stabilization of $M$ linear systems by one constant output-feedback controller is developed. The design equations are functions of the state and the control weighting matrices. An example of the stabilization of an aircraft at different operating points is given.
References:
[1] Al–Sunni F., Lewis F. L.: Gain scheduling simplification by simultaneous stabilization. Trans. ASME: J. Guidance, Control, and Dynamics 16 (1993), 3, 602–603
[2] Ghosh B., Byrns C.: Simultaneous stabilization and pole placement by nonswitching dynamic compensation. IEEE Trans. Automat. Control AC–28 (1983), 735–741 DOI 10.1109/TAC.1983.1103299 | MR 0713900
[3] Looze D.: A dual optimization prcedure for linear quadatic robust control problems. Automatica 19 (1983), 3, 299–302 DOI 10.1016/0005-1098(83)90107-3
[4] Moore J., Lige X.: Loop recovery and robust state estimate feedback design. IEEE Trans. Automat. Control AC–32 (1987), 6, 512–517 DOI 10.1109/TAC.1987.1104646
[5] Paduano J., Downing D.: Sensitivity analysis of digital flight control systems using singular–value concepts. Trans. ASME: J. Guidance, Control, and Dynamics 12 (1989), 3, 297-303 MR 0997405
[6] Peterson I.: A procedure for simultaneously stabilizing a collection of single input linear systems using nonlinear state–feedback control. Automatica 23 (1987), 33–40 DOI 10.1016/0005-1098(87)90116-6 | MR 0880089
[7] Schmitendorf W., Holot C.: Simultaneous stabilization via linear state feedback control. IEEE Trans. Automat. Control AC–34 (1989), 9, 1001–1005 DOI 10.1109/9.35818 | MR 1007432
[8] G. G. Zames, Frances B.: Feedback minimax sensitivity, and optimal robustness. IEEE Trans. Automat. Control AC–28 (1983), 5, 585–601 DOI 10.1109/TAC.1983.1103275 | MR 0712956
Partner of
EuDML logo