Previous |  Up |  Next

Article

Keywords:
mean curvature flow; level set equation; numerical solution; semi-implicit scheme; complementary volume method; unconditional stability; consistency
Summary:
We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way.
References:
[1] L. Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel: Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123 (1993), 200–257.
[2] S. Angenent, M. E. Gurtin: Multiphase thermomechanics with an interfacial structure. 2. Evolution of an isothermal interface. Arch. Ration. Mech. Anal. 108 (1989), 323–391. DOI 10.1007/BF01041068
[3] G.  Barles, P. E. Souganidis: Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991), 271–283.
[4] M. Beneš, K. Mikula: Simulations of anisotropic motion by mean curvature—comparison of phase field and sharp interface approaches. Acta Math. Univ. Comen. 67 (1998), 17–42.
[5] S. L. Chan, E. O. Purisima: A new tetrahedral tesselation scheme for isosurface generation. Computers and Graphics 22 (1998), 83–90. DOI 10.1016/S0097-8493(97)00085-X
[6] V. Caselles, R. Kimmel, G. Sapiro: Geodesic active contours. International Journal of Computer Vision 22 (1997), 61–79. DOI 10.1023/A:1007979827043
[7] Y.-G. Chen, Y. Giga, S. Goto: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation. J.  Differ. Geom. 33 (1991), 749–786. DOI 10.4310/jdg/1214446564 | MR 1100211
[8] S. Corsaro, K. Mikula, A. Sarti, F. Sgallari: Semi-implicit co-volume method in 3D  image segmentation. SIAM J.  Sci. Comput. 28 (2006), 2248–2265. DOI 10.1137/060651203 | MR 2272260
[9] M. G. Crandall, H. Ishii, P.-L. Lions: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (NS) 27 (1992), 1–67. DOI 10.1090/S0273-0979-1992-00266-5 | MR 1118699
[10] K. Deckelnick, G. Dziuk: Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs. Interfaces Free Bound. 2 (2000), 341–359. MR 1789171
[11] K. Deckelnick, G. Dziuk: Numerical approximations of mean curvature flow of graphs and level sets. In: Mathematical Aspects of Evolving Interfaces, L.  Ambrosio, K.  Deckelnick, G.  Dziuk, M.  Mimura, V. A.  Solonnikov, H. M.  Soner (eds.), Springer, Berlin-Heidelberg-New York, 2003, pp. 53–87. MR 2011033
[12] G. Dziuk: An algorithm for evolutionary surfaces. Numer. Math. 58 (1991), 603–611. MR 1083523 | Zbl 0714.65092
[13] G. Dziuk: Convergence of a semi-discrete scheme for the curve shortening flow. Math. Models Methods Appl. Sci. 4 (1994), 589–606. DOI 10.1142/S0218202594000339 | MR 1291140 | Zbl 0811.65112
[14] L. C. Evans, J. Spruck: Motion of level sets by mean curvature  I. J.  Differ. Geom. 33 (1991), 635–681. DOI 10.4310/jdg/1214446559 | MR 1100206
[15] A. Handlovičová, K. Mikula, A. Sarti: Numerical solution of parabolic equations related to level set formulation of mean curvature flow. Comput. Vis. Sci. 1 (1998), 179–182. DOI 10.1007/s007910050016
[16] A. Handlovičová, K. Mikula, F. Sgallari: Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution. Numer. Math. 93 (2003), 675–695. DOI 10.1007/s002110100374 | MR 1961884
[17] A. Handlovičová, K. Mikula, F. Sgallari: Variational numerical methods for solving nonlinear diffusion equations arising in image processing. J.  Visual Communication and Image Representation 13 (2002), 217–237. DOI 10.1006/jvci.2001.0479
[18] J. Kačur, K. Mikula: Solution of nonlinear diffusion appearing in image smoothing and edge detection. Appl. Numer. Math. 17 (1995), 47–59. DOI 10.1016/0168-9274(95)00008-I | MR 1335517
[19] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, A. Yezzi: Conformal curvature flows: from phase transitions to active vision. Arch. Ration. Mech. Anal. 134 (1996), 275–301. DOI 10.1007/BF00379537 | MR 1412430
[20] R. Le Veque: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002. MR 1925043
[21] K. Mikula, J. Kačur: Evolution of convex plane curves describing anisotropic motions of phase interfaces. SIAM J. Sci. Comput. 17 (1996), 1302–1327. DOI 10.1137/S1064827594261905 | MR 1413703
[22] K. Mikula, N. Ramarosy: Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing. Numer. Math. 89 (2001), 561–590. DOI 10.1007/PL00005479 | MR 1864431
[23] K. Mikula, A. Sarti, F. Sgallari: Co-volume method for Riemannian mean curvature flow in subjective surfaces multiscale segmentation. Comput. Vis. Sci. 9 (2006), 23–31. DOI 10.1007/s00791-006-0014-0 | MR 2214835
[24] K. Mikula, A. Sarti, F. Sgallari: Semi-implicit co-volume level set method in medical image segmentation. In: Handbook of Biomedical Image Analysis: Segmentation and Registration Models, J. Suri et al. (eds.), Springer, New York, 2005, pp. 583–626.
[25] K. Mikula, D. Ševčovič: Evolution of plane curves driven by a nonlinear function of curvature and anisotropy. SIAM J.  Appl. Math. 61 (2001), 1473–1501. DOI 10.1137/S0036139999359288 | MR 1824511
[26] K. Mikula, D. Ševčovič: Computational and qualitative aspects of evolution of curves driven by curvature and external force. Computing and Visualization in Science 6 (2004), 211–225. DOI 10.1007/s00791-004-0131-6 | MR 2071441
[27] R. H. Nochetto, M. Paolini, C. Verdi: Sharp error analysis for curvature dependent evolving fronts. Math. Models Methods Appl. Sci. 3 (1993), 711–723. DOI 10.1142/S0218202593000369 | MR 1245632
[28] A. M. Oberman: A convergent monotone difference scheme for motion of level sets by mean curvature. Numer. Math. 99 (2004), 365–379. DOI 10.1007/s00211-004-0566-1 | MR 2107436 | Zbl 1070.65082
[29] S. Osher, R. Fedkiw: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York, 2003. MR 1939127
[30] S. Osher, J. Sethian: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988), 12–49. MR 0965860
[31] A. Sarti, R. Malladi, J.A. Sethian: Subjective surfaces: A method for completing missing boundaries. Proc. Natl. Acad. Sci. USA 12 (2000), 6258–6263. MR 1760935
[32] J. A. Sethian: Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge University Press, New York, 1999. MR 1700751
[33] N. J. Walkington: Algorithms for computing motion by mean curvature. SIAM J.  Numer. Anal. 33 (1996), 2215–2238. DOI 10.1137/S0036142994262068 | MR 1427460 | Zbl 0863.65061
Partner of
EuDML logo