[1] I. Bock, J. Jarušek:
Unilateral dynamic contact of viscoelastic von Kármán plates. Adv. Math. Sci. Appl. 16 (2006), 175–187.
MR 2253231
[4] P. G. Ciarlet, P. Rabier:
Les équations de von Kármán. Springer-Verlag, Berlin, 1980.
MR 0595326
[5] C. Eck, J. Jarušek, and M. Krbec:
Unilateral contact problems. Variational Methods and Existence Theorems. Pure and Applied Mathematics No. 270, Chapman & Hall/CRC, Boca Raton-London-New York-Singapore, 2005.
MR 2128865
[6] J. Jarušek: Solvability of unilateral hyperbolic problems involving viscoelasticity via penalization. Proc. of “Conference EQUAM”, Varenna 1992 (R. Salvi, ed.). SAACM 3 (1993), 129–140.
[7] J. Jarušek:
Solvability of the variational inequality for a drum with a memory vibrating in the presence of an obstacle. Boll. Unione Mat. Ital. VII. Ser., A 8 (1994), 113–122.
MR 1273193
[9] H. Koch, A. Stahel:
Global existence of classical solutions to the dynamic von Kármán equations. Math. Methods Appl. Sci. 16 (1993), 581–586.
DOI 10.1002/mma.1670160806 |
MR 1233041
[10] J. E. Muñoz Rivera, G. Perla Menzala:
Decay rates of solutions to a von Kármán system for viscoelastic plates with memory. Q. Appl. Math. 57 (1999), 181–200.
DOI 10.1090/qam/1672191 |
MR 1672191
[11] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Masson/Academia, Paris/Praha, 1967.
MR 0227584
[12] A. Oukit, R. Pierre:
Mixed finite element for the linear plate problem: the Hermann-Miyoshi model revisited. Numer. Math. 74 (1996), 453–477.
DOI 10.1007/s002110050225 |
MR 1414418