[2] A. V. Bitsadze:
On the theory of nonlocal boundary value problems. Sov. Math. Dokl. 30 (1984), 8–10.
MR 0757061 |
Zbl 0586.30036
[3] A. V. Bitsadze:
On a class of conditionally solvable nonlocal boundary value problems for harmonic functions. Sov. Math. Dokl. 31 (1985), 91–94.
Zbl 0607.30039
[4] A. V. Bitsadze, A. A. Samarskiĭ: On some simple generalizations of linear elliptic boundary problems. Sov. Math. Dokl. 10 (1969), 398–400.
[6] W. Feng, J. R. L. Webb:
Solvability of $m$-point boundary value problems with nonlinear growth. J. Math. Anal. Appl. 212 (1997), 467–480.
DOI 10.1006/jmaa.1997.5520 |
MR 1464891
[7] M. Garcia-Huidobro, C. P. Gupta, and R. Manásevich:
Solvability for a nonlinear three-point boundary value problem with $p$-Laplacian-like operator at resonance. Abstr. Appl. Anal. 6 (2001), 191–213.
DOI 10.1155/S1085337501000550 |
MR 1866004
[8] M. Garcia-Huidobro, C. P. Gupta, and R. Manásevich:
An $m$-point boundary value problem of Neumann type for a $p$-Laplacian like operator. Nonlinear Anal., Theory Methods Appl. 56A (2004), 1071–1089.
MR 2038737
[9] M. Garcia-Huidobro, C. P. Gupta, and R. Manásevich:
A Dirichelet-Neumann $m$-point BVP with a $p$-Laplacian-like operator. Nonlinear Anal., Theory Methods Appl. 62 (2005), 1067–1089.
DOI 10.1016/j.na.2005.04.020 |
MR 2152998
[10] M. Garcia-Huidobro, R. Manásevich:
A three point boundary value problem containing the operator $-(\phi (u^{\prime }))^{\prime } $. Discrete Contin. Dyn. Syst. Suppl. (2003), 313–319.
MR 2018130
[17] C. P. Gupta, S. K. Ntouyas, and P. Ch. Tsamatos:
On an $m$-point boundary value problem for second order ordinary differential equations. Nonlinear Anal., Theory Methods Appl. 23 (1994), 1427–1436.
DOI 10.1016/0362-546X(94)90137-6 |
MR 1306681
[18] C. P. Gupta, S. Ntouyas, and P. Ch. Tsamatos:
Solvability of an $m$-point boundary value problem for second order ordinary differential equations. J. Math. Anal. Appl. 189 (1995), 575–584.
DOI 10.1006/jmaa.1995.1036 |
MR 1312062
[19] C. P. Gupta, S. K. Ntouyas, and P. Ch. Tsamatos:
Existence results for $m$-point boundary value problems. Differ. Equ. Dyn. Syst. 2 (1994), 289–298.
MR 1386275
[20] C. P. Gupta, S. K. Ntouyas, and P. Ch. Tsamatos:
On the solvability of some multi-point boundary value problems. Appl. Math. 41 (1996), 1–17.
MR 1365136
[21] C. P. Gupta, S. K. Ntouyas, and P. Ch. Tsamatos:
Existence results for multi-point boundary value problems for second order ordinary differential equations. Bull. Greek Math. Soc. 43 (2000), 105–123.
MR 1846952
[23] V. A. Il’in, E. I. Moiseev: Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and difference aspects. Differ. Equ. 23 (1987), 803–810.
[24] V. A. Il’in, E. I. Moiseev: Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator. Differ. Equ. 23 (1987), 979–987.
[28] J. Mawhin:
Topological degree methods in nonlinear boundary value problems. In: NSF-CBMS Regional Conference Series in Math. No. 40, Americal Mathematical Society, Providence, 1979.
MR 0525202 |
Zbl 0414.34025