[1] R. Byrd, J. C. Gilbert, and J. Nocedal:
A trust region method based on interior point techniques for nonlinear programming. Math. Program. A 89 (2000), 149–185.
DOI 10.1007/PL00011391 |
MR 1795061
[2] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu:
A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20 (1999), 720–755.
DOI 10.1137/S0895479895291765 |
MR 1685050
[3] D. Gilbarg, N. S. Trudinger:
Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 2001.
MR 1814364
[4] A. Griewank:
Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia, 2000.
MR 1753583 |
Zbl 0958.65028
[5] J. Hämäläinen:
Mathematical Modelling and Simulation of Fluid Flows in Headbox of Paper Machines. University of Jyväskylä, Jyväskyä, 1993.
MR 1218394
[7] J. Haslinger, R. A. E. Mäkinen:
Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM, Philadelphia, 2003.
MR 1969772
[8] J. Haslinger, J. Málek, and J. Stebel:
Shape optimization in problems governed by generalised Navier-Stokes Equations: Existence analysis. Control Cybern. 34 (2005), 283–303.
MR 2211072
[9] M. Křížek, P. Neittaanmäki:
Finite Element Approximation of Variational Problems and Applications. Longman Academic, Scientific & Technical, Harlow, 1990.
MR 1066462
[10] O. A. Ladyzhenskaya, N. N. Ural’tseva: Linear and Quasilinear Elliptic Equations. Academic Press, New York-London, 1968.
[11] R. A. E. Mäkinen, J. Hämäläinen:
Optimal control of a turbulent fibre suspension flowing in a planar contraction. Commun. Numer. Meth. Eng.; Published Online: 13 Dec 2005, DOI: 10.1002/cnm.833.
DOI 10.1002/cnm.833 |
MR 2235029
[12] A. Olson, I. Frigaard, C. Chan, and J. P. Hämäläinen:
Modelling a turbulent fibre suspension flowing in a planar contraction: The one-dimensional headbox. Int. J. Multiphase Flow 30 (2004), 51–66.
DOI 10.1016/j.ijmultiphaseflow.2003.10.006