Previous |  Up |  Next

Article

Keywords:
nonstationary convection-diffusion-reaction equation; space-time discontinuous Galerkin finite element discretization; nonsymmetric treatment of diffusion terms; error estimates
Summary:
The paper presents the theory of the discontinuous Galerkin finite element method for the space-time discretization of a linear nonstationary convection-diffusion-reaction initial-boundary value problem. The discontinuous Galerkin method is applied separately in space and time using, in general, different nonconforming space grids on different time levels and different polynomial degrees $p$ and $q$ in space and time discretization, respectively. In the space discretization the nonsymmetric interior and boundary penalty approximation of diffusion terms is used. The paper is concerned with the proof of error estimates in “$L^2(L^2)$”- and “$ \sqrt{ \varepsilon } L^2(H^1) $”-norms, where $\varepsilon \ge 0$ is the diffusion coefficient. Using special interpolation theorems for the space as well as time discretization, we find that under some assumptions on the shape regularity of the meshes and a certain regularity of the exact solution, the errors are of order $ O(h^p+\tau ^q)$. The estimates hold true even in the hyperbolic case when $ \varepsilon = 0$.
References:
[1] D. N. Arnold: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982), 742–760. DOI 10.1137/0719052 | MR 0664882 | Zbl 0482.65060
[2] D. N.  Arnold, F.  Brezzi, B.  Cockburn, and D.  Marini: Discontinuos Galerkin methods for elliptic problems. In: Discontinuous Galerkin methods. Theory, Computation and Applications. Lect. Notes Comput. Sci. Eng.  11, B. Cockburn et al. (eds.), Springer-Verlag, Berlin, 2000, pp. 89–101. MR 1842165
[3] D. N.  Arnold, F.  Brezzi, B.  Cockburn, and D.  Marini: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002), 1749–1779. DOI 10.1137/S0036142901384162 | MR 1885715
[4] I.  Babuška, C. E.  Baumann, and J. T.  Oden: A discontinuous $hp$  finite element method for diffusion problems, 1-D analysis. Comput. Math. Appl. 37 (1999), 103–122. DOI 10.1016/S0898-1221(99)00117-0 | MR 1688050
[5] F.  Bassi, S.  Rebay: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J.  Comput. Phys. 131 (1997), 267–279. DOI 10.1006/jcph.1996.5572 | MR 1433934
[6] F.  Bassi, S.  Rebay: High-order accurate discontinuous finite element solution of the 2D  Euler equations. J.  Comput. Phys. 138 (1997), 251–285. DOI 10.1006/jcph.1997.5454 | MR 1607481
[7] C. E. Baumann, J. T. Oden: A discontinuous $hp$  finite element method for the Euler and Navier-Stokes equations. Int. J.  Numer. Methods Fluids 31 (1999), 79–95. DOI 10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C | MR 1714511
[8] P. G.  Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. MR 0520174 | Zbl 0383.65058
[9] B.  Cockburn: Discontinuous Galerkin methods for convection-dominated problems. In: High-Order Methods for Computational Physics. Lect. Notes Comput. Sci. Eng.  9, T. J. Barth, H. Deconinck (eds.), Springer-Verlag, Berlin, 1999, pp. 69–224. MR 1712278 | Zbl 0937.76049
[10] Discontinuous Galerkin Methods. Lect. Notes Comput. Sci. Eng.  11. B.  Cockburn, G. E.  Karniadakis, and C.-W.  Shu (eds.), Springer-Verlag, Berlin, 2000.
[11] B.  Cockburn, C. W.  Shu: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II.  General framework. Math. Comp. 52 (1989), 411–435. MR 0983311
[12] T. A.  Davis, I. S.  Duff: A combined unifrontal/multifrontal method for unsymmetric sparse matrices. ACM Trans. Math. Softw. 25 (1999), 1–20. DOI 10.1145/305658.287640 | MR 1697461
[13] V. Dolejší, M. Feistauer: On the discontinuous Galerkin method for the numerical solution of compressible high-speed flow. In: Numerical Mathematics and Advanced Applications, ENUMATH  2001, F. Brezzi, A. Buffa, S. Corsaro, and A. Murli (eds.), Springer-Verlag, Berlin, 2003, pp. 65–83. MR 2360708
[14] V.  Dolejší, M.  Feistauer: Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection-diffusion problems. Numer. Funct. Anal. Optimization 26 (2005), 349–383. DOI 10.1081/NFA-200067298 | MR 2153838
[15] V.  Dolejší, M.  Feistauer: A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow. J.  Comput. Phys. 198 (2004), 727–746. DOI 10.1016/j.jcp.2004.01.023 | MR 2062915
[16] V.  Dolejší, M.  Feistauer, and J.  Hozman: Analysis of semi-implicit  DGFEM for nonlinear convection-diffusion problems on nonconforming meshes. Preprint No.  MATH-knm-2005/1, Charles University Prague, School of Mathematics, 2005. MR 2325393
[17] V.  Dolejší, M.  Feistauer, and V.  Kučera: On a semi-implicit discontinuous Galerkin FEM for the nonstationary compressible Euler equations. In: Hyperbolic Problems: Theory, Numerics and Applications.  I. Proc. 10th International Conference Osaka, September  2004, F.  Asakura, H.  Aiso, S.  Kawashima, A.  Matsumura, S.  Nishibata, and K.  Nishihara (eds.), Yokohama Publishers, Yokohama, 2006, pp. 391–398. MR 2667262
[18] V.  Dolejší, M.  Feistauer, and C.  Schwab: A finite volume discontinuous Galerkin scheme for nonlinear convection-diffusion problems. Calcolo 39 (2002), 1–40. DOI 10.1007/s100920200000 | MR 1901200
[19] V.  Dolejší, M.  Feistauer, and C.  Schwab: On some aspects of the discontinuous Galerkin finite element method for conservation laws. Math. Comput. Simul. 61 (2003), 333–346. DOI 10.1016/S0378-4754(02)00087-3 | MR 1984135
[20] V.  Dolejší, M.  Feistauer, and V.  Sobotíková: A discontinuous Galerkin method for nonlinear convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 194 (2005), 2709–2733. DOI 10.1016/j.cma.2004.07.017 | MR 2136396
[21] J.  Douglas, T.  Dupont: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Computing methods in applied sciences (Second Internat. Sympos., Versailles,  1975). Lect. Notes Phys., Vol.  58, Springer-Verlag, Berlin, 1976, pp. 207–216. MR 0440955
[22] K.  Eriksson, D.  Estep, P.  Hansbo, and C. Johnson: Computational Differential Equations. Cambridge University Press, Cambridge, 1996. MR 1414897
[23] K.  Eriksson, C.  Johnson, and V.  Thomée: Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 611–643. DOI 10.1051/m2an/1985190406111 | MR 0826227
[24] M.  Feistauer, V.  Kučera: Solution of compressible flow with all Mach numbers. In: European Conference on Computational Fluid Dynamics, ECCOMAS  CFD  2006, P.  Wesseling, E.  Onate, and J.  Périaux (eds.), TU  Delft, The Netherlands, 2006, published electronically.
[25] M.  Feistauer, K.  Švadlenka: Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems. J. Numer. Math. 12 (2004), 97–117. MR 2062581
[26] R.  Hartmann, P.  Houston: Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. Technical Report  2001-42 (SFB  359), IWR Heidelberg. MR 1947780
[27] F.  Hecht, O.  Pironneau, and A. Le  Hyaric: www.freefem.org/ff++.
[28] P.  Houston, C.  Schwab, and E.  Süli: Discontinuous $hp$-finite element methods for advection-diffusion-reaction problems. SIAM  J.  Numer. Anal. 39 (2002), 2133–2163. DOI 10.1137/S0036142900374111 | MR 1897953
[29] J.  Jaffre, C.  Johnson, and A.  Szepessy: Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws. Math. Models Methods Appl. Sci. 5 (1995), 367–386. DOI 10.1142/S021820259500022X | MR 1330139
[30] C.  Johnson, J.  Pitkäranta: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp. 46 (1986), 1–26. DOI 10.1090/S0025-5718-1986-0815828-4 | MR 0815828
[31] A.  Kufner, O.  John, and S.  Fučík: Function Spaces. Academia, Praha, 1977. MR 0482102
[32] P.  Le Saint, P.-A.  Raviart: On a finite element method for solving the neutron transport equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations, C. de Boor (ed.), Academic Press, , 1974, pp. 89–145. MR 0658142
[33] J.-L.  Lions: Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Paris, 1969. MR 0259693 | Zbl 0189.40603
[34] www.netlib.org/minpack. University of Chicago, Operator of Argonne Laboratory (1999).
[35] J. T.  Oden, I.  Babuška, and C. E.  Baumann: A discontinuous $hp$  finite element method for diffusion problems. J.  Comput. Phys. 146 (1998), 491–519. DOI 10.1006/jcph.1998.6032 | MR 1654911
[36] W. H.  Reed, T. R.  Hill: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479. Los Alamos Scientific Laboratory, 1973.
[37] K.  Rektorys: The Method of Discretization in Time and Partial Differential Equations. Reidel, Dordrecht, 1982. MR 0689712 | Zbl 0522.65059
[38] B. Rivière, M. F. Wheeler: A discontinuous Galerkin method applied to nonlinear parabolic equations. In: Discontinuous Galerkin methods. Theory, Computation and Applications. Lect. Notes in Comput. Sci. Eng.  11, B. Cockburn et al. (eds.), Springer-Verlag, Berlin, 2000, pp. 231–244. MR 1842177
[39] B. Rivière, M. F. Wheeler: Non-conforming methods for transport with nonlinear reaction. Contemp. Math. 295 (2002), 421–432. DOI 10.1090/conm/295/05032 | MR 1911967
[40] B. Rivière, M. F. Wheeler, and V. Girault: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems.  I. Comput. Geosci. 3 (1999), 337–360. DOI 10.1023/A:1011591328604 | MR 1750076
[41] B. Rivière, M. F. Wheeler, and V.  Girault: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J.  Numer. Anal. 39 (2001), 902–931. DOI 10.1137/S003614290037174X | MR 1860450
[42] H.-G.  Roos, M.  Stynes, and L.  Tobiska: Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems. Springer-Verlag, Berlin, 1996. MR 1477665
[43] D.  Schötzau: $hp$-DGFEM for Parabolic Evolution Problems. Applications to Diffusion and Viscous Incompressible Fluid Flow. PhD.  Dissertation ETH No.  13041, ETH, Zürich, 1999.
[44] D.  Schötzau, C.  Schwab: An  $hp$ a priori error analysis of the discontinuous Galerkin time-stepping for initial value problems. Calcolo 37 (2000), 207–232. DOI 10.1007/s100920070002 | MR 1812787
[45] S.  Sun, M. F.  Wheeler: $L^2(H^1)$-norm a posteriori error estimation for discontinuous Galerkin approximations of reactive transport problems. J.  Sci. Comput. 22–23 (2005), 501–530. DOI 10.1007/s10915-004-4148-2 | MR 2142207
[46] S.  Sun, M. F.  Wheeler: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J.  Numer. Anal. 43 (2005), 195–219. DOI 10.1137/S003614290241708X | MR 2177141
[47] S.  Sun, M. F.  Wheeler: Discontinuous Galerkin methods for coupled flow and reactive transport problems. Appl. Numer. Math. 52 (2005), 273–298. DOI 10.1016/j.apnum.2004.08.035 | MR 2116915
[48] J. J. W.  van der Vegt, H.  van der Ven: Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flow. I.  General formulation. J.  Comput. Phys. 182 (2002), 546–585. DOI 10.1006/jcph.2002.7185 | MR 1941852
[49] T.  Werder, K.  Gerdes, D.  Schötzau, and C.  Schwab: $hp$-discontinuous Galerkin time stepping for parabolic problems. Comput. Methods Appl. Mech. Eng. 190 (2001), 6685–6708. DOI 10.1016/S0045-7825(01)00258-4 | MR 1863353
[50] M. F.  Wheeler: An elliptic collocation-finite element method with interior penalties. SIAM J.  Numer. Anal. 15 (1978), 152–161. DOI 10.1137/0715010 | MR 0471383 | Zbl 0384.65058
Partner of
EuDML logo