[2] F. Alouges, J. Laminie, and S. M. Mefire:
Exponential meshes and three-dimensional computation of a magnetic field. Numer. Methods Partial Differ. Equations 19 (2003), 592–637.
DOI 10.1002/num.10064 |
MR 1996222
[3] K. I. Babenko, M. M. Vasil’ev:
On the asymptotic behavior of a steady flow of viscous fluid at some distance from an immersed body. J. Appl. Math. Mech. 37 (1973), 651–665.
DOI 10.1016/0021-8928(73)90115-9 |
MR 0347214
[5] S. C. Brenner, L. R. Scott:
The Mathematical Theory of Finite Element Methods, 2nd edition. Springer-Verlag, New York, 2002.
MR 1894376
[6] F. Brezzi, M. Fortin:
Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, 1991.
MR 1115205
[8] C.-H. Bruneau, P. Fabrie:
New efficient boundary conditions for incompressible Navier-Stokes equations: a well-posedness result. M2AN, Math. Model. Numer. Anal. 30 (1996), 815–840.
DOI 10.1051/m2an/1996300708151 |
MR 1423081
[9] C. Calgaro, P. Deuring, and D. Jennequin:
A preconditioner for generalized saddle point problems: application to 3D stationary Navier-Stokes equations. Numer. Methods Partial Differ. Equations 22 (2006), 1289-1313.
DOI 10.1002/num.20154 |
MR 2257634
[12] P. Deuring:
Approximating exterior flows by flows on truncated exterior domains: piecewise polygonial artificial boundaries. In: Elliptic and Parabolic problems. Proceedings of the 4th European Conference, Rolduc and Gaeta, 2001, J. Bemelmans (ed.), World Scientific, Singapore, 2002, pp. 364–376.
MR 1937556
[13] P. Deuring:
Exterior stationary Navier-Stokes flows in 3D with non-zero velocity at infinity: asymptotic behaviour of the second derivatives of the velocity. Commun. Partial Differ. Equations 30 (2005), 987–1020.
DOI 10.1081/PDE-200064436 |
MR 2180292
[14] P. Deuring:
A finite element method for 3D exterior Oseen flows: error estimates. Submitted.
Zbl 1148.35062
[16] P. Deuring, S. Kračmar:
Exterior stationary Navier-Stokes flows in 3D with non-zero velocity at infinity: approximation by flows in bounded domains. Math. Nachr. 269–270 (2004), 86–115.
DOI 10.1002/mana.200310167 |
MR 2074775
[17] R. Farwig:
A variational approach in weighted Sobolev spaces to the operator $- \Delta + \partial / \partial x_1$ in exterior domains of $\mathbb{R}^3$. Math. Z. 210 (1992), 449–464.
MR 1171183
[18] R. Farwig:
The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces. Math. Z. 211 (1992), 409–447.
DOI 10.1007/BF02571437 |
MR 1190220
[20] M. Feistauer, C. Schwab:
Coupled problems for viscous incompressible flow in exterior domains. In: Applied Nonlinear Analysis, A. Sequeira (ed.), Kluwer/Plenum, New York, 1999, pp. 97–116.
MR 1727443
[21] M. Feistauer, C. Schwab:
Coupling of an interior Navier-Stokes problem with an exterior Oseen problem. J. Math. Fluid Mech. 3 (2001), 1–17.
DOI 10.1007/PL00000961 |
MR 1830652
[23] G. P. Galdi:
An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearized Steady Problems (rev. ed.). Springer-Verlag, New York, 1998.
MR 1284205
[24] G. P. Galdi:
An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems. Springer-Verlag, New York, 1994.
MR 1284206 |
Zbl 0949.35005
[25] V. Girault, P.-A. Raviart:
Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, 1986.
MR 0851383
[29] G. H. Guirguis:
On the coupling of boundary integral and finite element methods for the exterior Stokes problem in 3D. SIAM J. Numer. Anal. 24 (1987), 310–322.
DOI 10.1137/0724023 |
MR 0881366
[30] G. H. Guirguis, M. D. Gunzburger:
On the approximation of the exterior Stokes problem in three dimensions. M2AN, Math. Model. Numer. Anal. 21 (1987), 445–464.
DOI 10.1051/m2an/1987210304451 |
MR 0908240
[31] M. D. Gunzburger:
Finite Element Methods for Viscous Incompressible Flows. Academic Press, Boston, 1989.
MR 1017032 |
Zbl 0697.76031
[32] L. Halpern, M. Schatzman:
Artificial boundary conditions for incompressible viscous flows. SIAM J. Math. Anal. 20 (1989), 308–353.
DOI 10.1137/0520021 |
MR 0982662
[35] S. Kračmar, J. Neustupa: Global existence of weak solutions of a nonsteady variational inequality of the Navier-Stokes type with mixed boundary conditions. In: Proceedings of the International Symposium on Numerical Analysis (ISNA’92), Charles University, Prague, 1993, pp. 156–177.
[36] S. Kračmar, J. Neustupa:
A weak solvability of a steady variational inequality of the Navier-Stokes type with mixed boundary conditions. Nonlinear Anal., Theory Methods Appl. 47 (2001), 4169–4180.
DOI 10.1016/S0362-546X(01)00534-X |
MR 1972357
[37] P. Kučera:
Solutions of the Navier-Stokes equations with mixed boundary conditions in a bounded domain. In: Analysis, Numerics and Applications of Differential and Integral Equations. Pitman Research Notes in Mathematics Series 379, M. Bach (ed.), Addison Wesley, London, 1998, pp. 127–131.
MR 1606691
[38] P. Kučera:
A structure of the set of critical points to the Navier-Stokes equations with mixed boundary conditions. In: Navier-Stokes Equations: Theory and Numerical Methods. Pitman Research Notes in Mathematics Series 388, R. Salvi (ed.), Addison Wesley, London, 1998, pp. 201–205.
MR 1773598
[41] S. A. Nazarov, M. Specovius-Neugenbauer:
Approximation of exterior boundary value problems for the Stokes system. Asymptotic Anal. 14 (1997), 233–255.
MR 1458705
[42] S. A. Nazarov, M. Specovius-Neugebauer:
Nonlinear artificial boundary conditions with pointwise error estimates for the exterior three dimensional Navier-Stokes problem. Math. Nachr. 252 (2003), 86–105.
DOI 10.1002/mana.200310039 |
MR 1903042
[43] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Masson, Paris, 1967.
MR 0227584
[45] A. Quarteroni, A. Valli:
Numerical Approximation of Partial Differential Equations. Springer-Verlag, New York, 1994.
MR 1299729
[48] A. Sequeira:
On the computer implementation of a coupled boundary and finite element method for the bidimensional exterior steady Stokes problem. Math. Methods Appl. Sci. 8 (1986), 117–133.
DOI 10.1002/mma.1670080109 |
MR 0833255 |
Zbl 0619.76039