[2] H. W. Alt:
Lineare Funktionalanalysis. Springer-Verlag, Berlin, 1985.
Zbl 0577.46001
[3] G. Allaire, M. Briane:
Multiscale convergence and reiterated homogenization. Proc. Roy. Soc. Edinb. 126 (1996), 297–342.
MR 1386865
[4] M. Amar:
Two-scale convergence and homogenization on ${\mathrm BV}(\Omega )$. Asymptotic Anal. 16 (1998), 65–84.
MR 1600123
[5] B. Birnir, N. Svanstedt, and N. Wellander: Two-scale compensated compactness. Submitted.
[6] A. Bourgeat, A. Mikelic, and S. Wright:
Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math. 456 (1994), 19–51.
MR 1301450
[7] J. Casado-Diaz, I. Gayte:
A general compactness result and its application to the two-scale convergence of almost periodic functions. C. R. Acad. Sci. Paris, Série I 323 (1996), 329–334.
MR 1408763
[10] A. Holmbom, N. Svanstedt, and N. Wellander:
Multiscale convergence and reiterated homogenization for parabolic problems. Appl. Math 50 (2005), 131–151.
DOI 10.1007/s10492-005-0009-z |
MR 2125155
[11] J.-L. Lions, D. Lukkassen, L.-E. Persson, and P. Wall:
Reiterated homogenization of nonlinear monotone operators. Chin. Ann. Math., Ser. B 22 (2001), 1–12.
DOI 10.1142/S0252959901000024 |
MR 1823125
[12] D. Lukkassen, G. Nguetseng, and P. Wall:
Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002), 35–86.
MR 1912819
[16] L. Tartar:
Compensated compactness and applications to partial differential equations. Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV. Res. Notes Math. 39, (ed.), Pitman, San Francisco, 1979, pp. 136–212.
MR 0584398 |
Zbl 0437.35004