[2] G. H. Golub, C. F. Van Loan:
Matrix Computations, 2nd edition. The Johns Hopkins University Press, Baltimore, 1989.
MR 1002570
[5] W. J. Layton, J. M. Maubach, and P. J. Rabier:
Robustness of an elementwise parallel finite element method for convection-diffusion problems. SIAM J. Sci. Comput. 19 (1998), 1870–1891.
DOI 10.1137/S1064827595293545 |
MR 1638068
[6] W. Layton, J. M. Maubach, and P. Rabier:
Parallel algorithms for maximal monotone operators of local type. Numer. Math. 71 (1995), 29–58.
DOI 10.1007/s002110050135 |
MR 1339731
[7] J. Maubach:
Local bisection refinement for $n$-simplicial grids generated by reflections. SIAM J. Sci. Comput. 16 (1995), 210–227.
DOI 10.1137/0916014 |
MR 1311687
[8] J. Maubach: The efficient location of simplicial neighbors for locally refined $n$-simplicial grids. In: Proceedings of the 5th International Meshing Roundtable, Pittsburgh, October 1996, 1996, pp. 137–153.
[9] J. Maubach:
Iterative Methods for Non-Linear Partial Differential Equations. CWI, Amsterdam, 1994.
MR 1354839 |
Zbl 0820.65022
[10] J. Maubach: Local bisection refinement and optimal order algebraic multilevel preconditioners. In: PRISM-97 conference Proceedings, O. Axelsson et al. (eds.), University of Nijmegen, 1997, pp. 121–136.
[12] A. Mukherjee: An adaptive finite element code for elliptic boundary value problems in three dimensions with applications in numerical relativity. PhD. Thesis, Penn State University, 1996.
[13] A. Plaza, J. P. Suárez, M. A. Padrón, S. Falcón, and D. Amieiro:
Mesh quality improvement and other properties in the four-triangles longest-edge partition. Comput. Aided Geom. Des. 21 (2004), 353–369.
DOI 10.1016/j.cagd.2004.01.001 |
MR 2046913
[14] M. C. Rivara, C. Levin:
A 3-D refinement algorithm suitable for adaptive and multi-grid techniques. Commun. Appl. Numer. Methods 8 (1992), 281–290.
DOI 10.1002/cnm.1630080502