[1] P. Bisegna, F. Lebon, and F. Maceri:
D-PANA: a convergent block-relaxation solution method for the discretized dual formulation of the Signorini-Coulomb contact problem. C. R. Acad. Sci. Paris, Sér. I 333 (2001), 1053–1058.
DOI 10.1016/S0764-4442(01)02153-X |
MR 1872471
[4] J. Haslinger, Z. Dostál, and R. Kučera:
On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction. Comput. Methods Appl. Mech. Eng. 191 (2002), 2261–2881.
DOI 10.1016/S0045-7825(01)00378-4 |
MR 1903144
[5] I. Hlaváček, J. Haslinger, J. Nečas, and J. Lovíšek:
Numerical Solution of Variational Inequalities. Springer Series in Applied Mathematical Sciences 66. Springer-Verlag, New York, 1988.
MR 0952855
[7] J. Haslinger, P. D. Panagiotopulos:
The reciprocal variational approach to the Signorini problem with friction. Approximation results. Proc. R. Soc. Edinb. Sect. A 98 (1984), 365–383.
DOI 10.1017/S0308210500013536 |
MR 0768357
[8] N. Kikuchi, J. T. Oden:
Contact Problems in Elasticity. A Study of Variational Inequalities and Finite Element Methods, Mathematics and Computer Science for Engineers. SIAM, Philadelphia, 1988.
MR 0961258
[9] J. Nečas, J. Jarušek, and J. Haslinger:
On the solution of the variational inequality to the Signorini problem with small friction. Boll. Unione Mat. Ital. V. Ser., 17 (1980), 796–811.
MR 0580559