[1] L. Caffarelli, R. Kohn, L. Nirenberg:
Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982), 771–831.
DOI 10.1002/cpa.3160350604 |
MR 0673830
[2] D. Chae, H. J. Choe:
Regularity of solutions to the Navier-Stokes equation. Electron. J. Differential Equations 5 (1999), 1–7.
MR 1673067
[3] C. L. Berselli, G. P. Galdi:
Regularity criterion involving the pressure for weak solutions to the Navier-Stokes equations. Dipartimento di Matematica Applicata, Università di Pisa, Preprint No. 2001/10.
MR 1920038
[4] L. Escauriaza, G. Seregin, V. Šverák:
On backward uniqueness for parabolic equations. Zap. Nauch. Seminarov POMI 288 (2002), 100–103.
MR 1923546
[5] E. Hopf:
Über die Anfangswertaufgabe für die Hydrodynamischen Grundgleichungen. Math. Nachrichten 4 (1951), 213–231.
MR 0050423
[6] K. K. Kiselev, O. A. Ladyzhenskaya:
On existence and uniqueness of solutions of the solutions to the Navier-Stokes equations. Izv. Akad. Nauk SSSR 21 (1957), 655–680. (Russian)
MR 0100448
[8] J. Neustupa, J. Nečas:
New conditions for local regularity of a suitable weak solution to the Navier-Stokes equations. J. Math. Fluid Mech. 4 (2002), 237–256.
DOI 10.1007/s00021-002-8544-9 |
MR 1932862
[9] J. Neustupa, A. Novotný, P. Penel: A remark to interior regularity of a suitable weak solution to the Navier-Stokes equations. CIM Preprint No. 25 (1999).
[10] J. Neustupa, P. Penel:
Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier-Stokes Equations. In: Mathematical Fluid Mechanics (Recent Results and Open Problems), J. Neustupa, P. Penel (eds.), Birkhäuser-Verlag, Basel, 2001, pp. 237–268.
MR 1865056
[11] L. Nirenberg:
On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat., III. Ser. 123 13 (1959), 115–162.
MR 0109940 |
Zbl 0088.07601
[12] M. Pokorný:
On the result of He concerning the smoothness of solutions to the Navier-Stokes equations. Electron. J. Differential Equations (2003), 1–8.
MR 1958046 |
Zbl 1014.35073
[15] G. Seregin, V. Šverák:
Navier-Stokes and backward uniqueness for the heat equation. IMA Preprint No. 1852 (2002).
MR 1972005
[16] J. Serrin: The initial boundary value problem for the Navier-Stokes equations. In: Nonlinear Problems, R. E. Langer (ed.), University of Wisconsin Press, 1963.
[17] E. M. Stein:
Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970.
MR 0290095 |
Zbl 0207.13501
[18] Y. Zhou: A new regularity result for the Navier-Stokes equations in terms of the gradient of one velocity component. Methods and Applications in Analysis (to appear).