Article
Keywords:
periodic solutions; fixed points; nonlinear evolution problem; pseudo-Laplacian
Summary:
In this paper we prove existence of periodic solutions to a nonlinear evolution system of second order partial differential equations involving the pseudo-Laplacian operator. To show the existence of periodic solutions we use Faedo-Galerkin method with a Schauder fixed point argument.
References:
[1] F. E. Browder, Bui An Ton:
Nonlinear functional equations in Banach spaces and elliptic super regularization. Math. Z. 105 (1968), 177–195.
DOI 10.1007/BF01109897 |
MR 0232256
[3] J. Cronin:
Fixed Point and Topological Degree in Nonlinear Analysis. Mathematical Surveys, No. 11. Amer. Math. Soc., Providence, 1964.
MR 0164101
[5] J. L. Lions:
Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris, 1969.
MR 0259693 |
Zbl 0189.40603
[6] L. A. Medeiros, M. M. Miranda:
Weak solutions of nonlinear Klein-Gordon equations. Ann. Math. Pura Appl. IV, ser. 146 (1987), 173–183.
MR 0916692
[8] M. Tsutsumi:
Some nonlinear evolution equations of second order. Proc. Japan. Acad. Ser. A Math. Sci. 47 (1971), 950–955.
MR 0312023 |
Zbl 0258.35017
[10] E. Zeidler:
Nonlinear Functional Analysis and its Applications: I—Fixed-Point Theorems. Springer-Verlag, New York, 1986.
MR 0816732 |
Zbl 0583.47050