[1] A. Amassad, M. Shillor and M. Sofonea:
A quasistatic contact problem for an elastic perfectly plastic body with Tresca’s friction. Nonlinear Anal. 35 (1999), 95–109.
DOI 10.1016/S0362-546X(98)00100-X |
MR 1633958
[2] A. Amassad, M. Sofonea:
Analysis of a quasistatic viscoplastic problem involving Tresca friction law. Discrete Contin. Dynam. Systems 4 (1998), 55–72.
MR 1485363
[3] L.-E. Anderson:
A quasistatic frictional problem with normal compliance. Nonlinear Anal. TMA 16 (1991), 347–370.
MR 1093846
[4] L.-E. Anderson:
A global existence result for a quasistatic contact problem with friction. Adv. Math. Sci. Appl. 5 (1995), 249–286.
MR 1325968
[5] H. Brézis:
Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18 (1968), 115–175.
DOI 10.5802/aif.280 |
MR 0270222
[6] H. Brézis: Problèmes unilatéraux. J. Math. Pures et Appl. 51 (1972), 1–168.
[7] J. Chen, W. Han and M. Sofonea:
Numerical analysis of a quasistatic problem of sliding frictional contact with wear. Methods Appl. Anal. 7 (2000), 687–704.
MR 1868552
[9] G. Duvaut, J. L. Lions:
Inequalities in Mechanics and Physics. Springer-Verlag, Berlin, 1976.
MR 0521262
[11] W. Han, B. D. Reddy:
Plasticity: Mathematical Theory and Numerical Analysis. Springer-Verlag, New York, 1999.
MR 1681061
[13] I. R. Ionescu, M. Sofonea:
Functional and Numerical Methods in Viscoplasticity. Oxford University Press, Oxford, 1993.
MR 1244578
[14] N. Kikuchi, J. T. Oden:
Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia, 1988.
MR 0961258
[15] I. Hlaváček, J. Haslinger, J. Nečas and J. Lovíšek:
Solution of Variational Inequalities in Mechanics. Springer-Verlag, New York, 1988.
MR 0952855
[17] J. Jarušek:
Dynamic contact problems with given friction for viscoelastic bodies. Czechoslovak Math. J. 46 (1996), 475–487.
MR 1408299
[18] J. Jarušek, C. Eck:
Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions. Math. Models Methods Appl. Sci. 9 (1999), 11–34.
DOI 10.1142/S0218202599000038 |
MR 1671535
[19] A. Klarbring, A. Mikelič and M. Shillor:
A global existence result for the quasistatic frictional contact problem with normal compliance. In: Unilateral Problems in Structural Analysis Vol. 4, G. Del Piero, F. Maceri (eds.), Birkhäuser, Boston, 1991, pp. 85–111.
MR 1169547
[20] D. Motreanu, M. Sofonea:
Evolutionary variational inequalities arising in quasistatic frictional contact problems for elastic materials. Abstract Appl. Anal. 4 (1999), 255–279.
DOI 10.1155/S1085337599000172 |
MR 1813003
[21] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction. Elsevier, Amsterdam, 1981.
[22] P. D. Panagiotopoulos:
Inequality Problems in Mechanics and Applications. Birkhäuser, Basel, 1985.
MR 0896909 |
Zbl 0579.73014
[23] M. Raous, M. Jean and J. J. Moreau (eds.): Contact Mechanics. Plenum Press, New York, 1995.
[24] M. Rochdi, M. Shillor and M. Sofonea:
Quasistatic nonlinear viscoelastic contact with normal compliance and friction. J. Elasticity 51 (1998), 105–126.
DOI 10.1023/A:1007413119583 |
MR 1664496
[26] M. Shillor (ed.): Recent Advances in Contact Mechanics. Math. Computer Model. 28 (1998), no. 4–8.
[28] M. Sofonea, M. Shillor:
Variational analysis of quasistatic viscoplastic contact problems with friction. Comm. Appl. Anal. 5 (2001), 135–151.
MR 1844677