[1] J. Baranger, C. Guillopé and J. C. Saut: Mathematical analysis of differential models for viscoelastic fluids. In: Rheology for Polymer Melts Processing, Chapt. II, Elsevier Science, Amsterdam, 1996.
[2] P. Dutto: Solutions physiquement raisonnables des équations de Navier-Stokes compressibles stationnaires dans un domaine extérieur du plan. Ph.D. thesis, University of Toulon, 1998.
[3] R. Farwig, A. Novotný and M. Pokorný:
The fundamental solution of a modified Oseen problem. Z. Anal. Anwendungen 19 (2000), 713–728.
DOI 10.4171/ZAA/976 |
MR 1784127
[4] G. P. Galdi:
An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems. Springer Tracts in Natural Philosophy, Vol. 38. Springer-Verlag, New York, 1994.
MR 1284205
[5] S. Kračmar, M. Novotný and M. Pokorný:
Estimates of Oseen kernels in weighted $L^p$ spaces. Journal of Mathematical Society of Japan 53 (2001), 59–111.
DOI 10.2969/jmsj/05310059 |
MR 1800524
[6] A. Novotný:
About the steady transport equation. In: Proceedings of Fifth Winter School at Paseky, Pitman Research Notes in Mathematics, 1998.
MR 1692347
[7] A. Novotný: Some Topics in the Mathematical Theory of Compressible Navier-Stokes Equations. Lecture Notes, Lipschitz Vorlesung. Univ. Bonn, to appear.
[8] A. Novotný, M. Padula:
Physically reasonable solutions to steady Navier-Stokes equations in 3-D exterior domains II ($v_\infty \ne 0$). Math. Ann. 308 (1997), 439–489.
DOI 10.1007/s002080050084 |
MR 1457741
[9] A. Novotný, M. Pokorný:
Three-dimensional steady flow of viscoelastic fluid past an obstacle. J. Math. Fluid Mech. 2 (2000), 294–314.
DOI 10.1007/PL00000956 |
MR 1781917
[10] M. Pokorný: Asymptotic behaviour of solutions to certain PDE’s describing the flow of fluids in unbounded domains. Ph.D. thesis, Charles University, Prague & University of Toulon and Var, Toulon-La Garde, 1999.
[11] M. Renardy:
Existence of slow steady flows of viscoelastic fluid with differential constitutive equations. Z. Angew. Math. Mech. 65 (1985), 449–451.
DOI 10.1002/zamm.19850650919 |
MR 0814684
[13] B. O. Turesson:
Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics Vol. 1736. Springer-Verlag, Berlin-Heidelberg, 2000.
DOI 10.1007/BFb0103912 |
MR 1774162