Previous |  Up |  Next

Article

Title: Aggregation/disaggregation method for safety models (English)
Author: Klapka, Štěpán
Author: Mayer, Petr
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 47
Issue: 2
Year: 2002
Pages: 127-137
Summary lang: English
.
Category: math
.
Summary: The paper concerns the possibilities for mathematical modelling of safety related systems (equipment oriented on safety). Some mathematical models have been required by the present European Standards for the railway transport. We are interested in the possibility of using Markov’s models to meet these Standards. In the text an example of using that method in the interlocking equipment life cycle is given. An efficient aggregation/disaggregation method for computing some characteristics of Markov chains is presented. (English)
Keyword: Markov chain
Keyword: stochastic matrix
Keyword: stationary probability vector
Keyword: aggregation/disaggregation algorithms
MSC: 15A51
MSC: 65C40
MSC: 65F10
MSC: 65F15
idZBL: Zbl 1090.65515
idMR: MR1894665
DOI: 10.1023/A:1021733118228
.
Date available: 2009-09-22T18:09:17Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134490
.
Reference: [1] G.  Ciardo, A.  Blakmore, P. F.  Chimento,  JR., J.  K.  Muppala and K. S.  Trivedi: Automated generation and analysis of Markov reward models using stochastic reward nets.In: Linear Algebra, Markov Chain, and Queueing Models, C. D. Meyer, R. J.  Plemmons (eds.), Springer-Verlag, New York, 1993, pp. 145–191. MR 1242135
Reference: [2] R. David, H. Alla: Petri Nets and Grafcet: Tools for Modelling Discrete Event Systems.Prentice Hall International, 1992.
Reference: [3] B. W. Johnson: Design and Analysis of Fault-Tolerant Digital Systems.Addison-Wesley Publishing Company, Massachusetts, 1989.
Reference: [4] Š. Klapka, P.  Mayer: Some aspects of modelling railway safety.In: Proceedings of the XIIIth SANM, Nečtiny,  (eds.), Západočeská univerzita, Plzeň, 1999, pp. 135–140.
Reference: [5] K. Kule: Reliability and safety of interlocking systems.NADAS, Praha, 1980. (Czech)
Reference: [6] I. Marek, P. Mayer: Convergence analysis of an iterative aggregation/disaggregation method for computing stationary probability vectors of stochastic matrices.Numer. Linear Algebra Appl. 5 (1998), 253–274. MR 1640726, 10.1002/(SICI)1099-1506(199807/08)5:4<253::AID-NLA124>3.0.CO;2-B
Reference: [7] I. Marek, P. Mayer: Iterative aggregation/disaggregation methods for computing stationary probability vectors of stochastic matrices can be finitely terminating.J. Differential Equations 3 (2001), 301–313. MR 1848180
Reference: [8] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli and G. Franceschinis: Modelling with Generalized Stochastic Petri Nets.John Wiley & Sons, Chichester, 1995.
Reference: [9] B. Plateau, K. Atif: Stochastic automata network for modelling parallel systems.IEEE transaction on software engineering 17 (1991), 1093–1108. MR 1133053, 10.1109/32.99196
Reference: [10] K. Rástočný: Models for analysis of safety computer interlocking systems.Habilitation thesis, University of Žilina, 1998. (Slovak)
Reference: [11] W. J. Stewart: Introduction to the Numerical Solution of Markov Chains.Princeton University Press, Princenton, 1994. Zbl 0821.65099, MR 1312831
Reference: [12] J. Walter: Stochastic Models in Economy.SNTL, Praha, 1970. (Czech)
.

Files

Files Size Format View
AplMat_47-2002-2_5.pdf 396.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo