Previous |  Up |  Next

Article

Keywords:
Banach space; closed linear operators; Drazin inverse; spectral sets; second order differential equations
Summary:
The paper defines and studies the Drazin inverse for a closed linear operator $A$ in a Banach space $X$ in the case that $0$ belongs to a spectral set of the spectrum of $A$. Results are applied to extend a result of Krein on a nonhomogeneous second order differential equation in a Banach space.
References:
[1] S. L. Campbell: Singular Systems of Differential Equations. Research Notes in Mathematics 40. Pitman, London, 1980. MR 0569589
[2] M. P. Drazin: Pseudo-inverse in associative rings and semigroups. Amer. Math. Monthly 65 (1958), 506–514. DOI 10.2307/2308576 | MR 0098762
[3] R. E. Harte: Spectral projections. Irish Math.  Soc. Bull. 11 (1984), 10–15. MR 0762003 | Zbl 0556.47001
[4] J. J. Koliha: A generalized Drazin inverse. Glasgow Math. J. 38 (1996), 367–381. DOI 10.1017/S0017089500031803 | MR 1417366 | Zbl 0897.47002
[5] J. J. Koliha, Pak  Wai  Poon: Spectral sets II. Rend. Circ. Mat. Palermo (Series II) 47 (1998), 293–310. MR 1633491
[6] J. J. Koliha, Trung Dinh Tran: The Drazin inverse for closed linear operators. (to appear).
[7] S. G. Krein: Linear Differential Equations in Banach Space. Amer. Math. Soc., Providence, 1971. MR 0342804
[8] M.  Z.  Nashed, Y.  Zhao: The Drazin inverse for singular evolution equations and partial differential operators. World Sci. Ser. Appl. Anal. 1 (1992), 441–456. MR 1180129
[9] A.  Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, Berlin, 1983. MR 0710486 | Zbl 0516.47023
[10] A.  E.  Taylor, D.  C.  Lay: Introduction to Functional Analysis, 2nd edition. Wiley, New York, 1980. MR 0564653
Partner of
EuDML logo