Previous |  Up |  Next

Article

Keywords:
tetrahedral finite elements of the Hermite type; maximum and minimum angle conditions; finite element interpolation theorems
Summary:
Tetrahedral finite $C^0$-elements of the Hermite type satisfying the maximum angle condition are presented and the corresponding finite element interpolation theorems in the maximum norm are proved.
References:
[1] T.  Apel, M.  Dobrowolski: Anisotropic interpolation with applications to the finite element method. Computing 47 (1992), 277–293. DOI 10.1007/BF02320197 | MR 1155498
[2] I.  Babuška, A. K.  Aziz: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214–226. DOI 10.1137/0713021 | MR 0455462
[3] R. E.  Barnhill, J. A.  Gregory: Sard kernel theorems on triangular domains with applications to finite element error bounds. Numer. Math. 25 (1976), 215–229. DOI 10.1007/BF01399411 | MR 0458000
[4] R. G.  Durán: Error estimates for 3-d narrow finite elements. Math. Comp. 68 (1999), 187–199. DOI 10.1090/S0025-5718-99-00994-1 | MR 1489970
[5] J. A.  Gregory: Error bounds for linear interpolation on triangles. In: Proc. MAFELAP II, J. R. Whiteman (ed.), Academic Press, London, 1976, pp. 163–170. MR 0458795
[6] P.  Jamet: Estimations d’erreur pour des éléments finis droits presque dégénérés. RAIRO Anal. Numér. 10 (1976), 43–61. MR 0455282
[7] M.  Křížek: On semiregular families of triangulations and linear interpolation. Appl. Math. 36 (1991), 223–232. MR 1109126
[8] M.  Křížek: On the maximum angle condition for linear tetrahedral elements. SIAM J.  Numer. Anal. 29 (1992), 513–520. DOI 10.1137/0729031 | MR 1154279
[9] N.  Al  Shenk: Uniform error estimates for certain narrow Lagrange finite elements. Math. Comp. 63 (1994), 105–119. DOI 10.1090/S0025-5718-1994-1226816-5 | MR 1226816 | Zbl 0807.65003
[10] J. L.  Synge: The Hypercircle in Mathematical Physics. Cambridge Univ. Press, London, 1957. MR 0097605 | Zbl 0079.13802
[11] A.  Ženíšek: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations. Academic Press, London, 1990. MR 1086876
[12] A.  Ženíšek: Maximum-angle condition and triangular finite elements of Hermite type. Math. Comp. 64 (1995), 929–941. DOI 10.2307/2153477 | MR 1297481
[13] M.  Zlámal: On the finite element method. Numer. Math. 12 (1968), 394–409. DOI 10.1007/BF02161362
Partner of
EuDML logo