[1] T. Apel, M. Dobrowolski:
Anisotropic interpolation with applications to the finite element method. Computing 47 (1992), 277–293.
DOI 10.1007/BF02320197 |
MR 1155498
[2] I. Babuška, A. K. Aziz:
On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214–226.
DOI 10.1137/0713021 |
MR 0455462
[3] R. E. Barnhill, J. A. Gregory:
Sard kernel theorems on triangular domains with applications to finite element error bounds. Numer. Math. 25 (1976), 215–229.
DOI 10.1007/BF01399411 |
MR 0458000
[5] J. A. Gregory:
Error bounds for linear interpolation on triangles. In: Proc. MAFELAP II, J. R. Whiteman (ed.), Academic Press, London, 1976, pp. 163–170.
MR 0458795
[6] P. Jamet:
Estimations d’erreur pour des éléments finis droits presque dégénérés. RAIRO Anal. Numér. 10 (1976), 43–61.
MR 0455282
[7] M. Křížek:
On semiregular families of triangulations and linear interpolation. Appl. Math. 36 (1991), 223–232.
MR 1109126
[8] M. Křížek:
On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992), 513–520.
DOI 10.1137/0729031 |
MR 1154279
[10] J. L. Synge:
The Hypercircle in Mathematical Physics. Cambridge Univ. Press, London, 1957.
MR 0097605 |
Zbl 0079.13802
[11] A. Ženíšek:
Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations. Academic Press, London, 1990.
MR 1086876
[12] A. Ženíšek:
Maximum-angle condition and triangular finite elements of Hermite type. Math. Comp. 64 (1995), 929–941.
DOI 10.2307/2153477 |
MR 1297481