[1] P. G. Ciarlet:
The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[2] M. Feistauer, K. Najzar:
Finite element approximation of a problem with a nonlinear Newton boundary condition. Numer. Math. 78 (1998), 403–425.
DOI 10.1007/s002110050318 |
MR 1603350
[3] M. Feistauer, V. Sobotíková:
Finite element approximation of nonlinear elliptic problems with discontinuous coefficients. RAIRO Modél. Math. Anal. Numér. 24 (1990), 457–500.
DOI 10.1051/m2an/1990240404571 |
MR 1070966
[4] M. Feistauer, A. Ženíšek:
Finite element solution of nonlinear elliptic problems. Numer. Math. 50 (1987), 451–475.
MR 0875168
[5] M. Křížek:
On semiregular families of triangulations and linear interpolation. Appl. Math. 36 (1991), 223–232.
MR 1109126
[6] A. Kufner, O. John and S. Fučík :
Function Spaces. Academia, Praha, 1977.
MR 0482102
[7] J. Nečas:
Les Métodes Directes en Théorie des Equations Elliptiques. Academia-Masson, Prague-Paris, 1967.
MR 0227584
[8] L. A. Oganesian, L. A Rukhovec: Variational-Difference Methods for the Solution of Elliptic Problems. Izd. Akad. Nauk ArSSR, Jerevan, 1979. (Russian)
[9] A. Ženíšek:
Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations. Academic Press, London, 1990.
MR 1086876
[10] A. Ženíšek:
The maximum angle condition in the finite element method for monotone problems with applications in magnetostatics. Numer. Math. 71 (1995), 399–417.
DOI 10.1007/s002110050151 |
MR 1347576
[11] A. Ženíšek:
Finite element variational crimes in the case of semiregular elements. Appl. Math. 41 (1996), 367–398.
MR 1404547
[12] A. Ženíšek: The use of semiregular finite elements. In: Proceedings of EQUADIFF, Conference on Differential Equations and Their Applications (R. P. Agarwal, F. Neuman and J. Vosmanský, eds.), Masaryk University, Brno & Electronic Publishing House, Stony Brook, New York, 1998, pp. 201–251.