Previous |  Up |  Next

Article

Title: Transfer of boundary conditions for difference equations (English)
Author: Vitásek, Emil
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 45
Issue: 6
Year: 2000
Pages: 469-479
Summary lang: English
.
Category: math
.
Summary: It is well-known that the idea of transferring boundary conditions offers a universal and, in addition, elementary means how to investigate almost all methods for solving boundary value problems for ordinary differential equations. The aim of this paper is to show that the same approach works also for discrete problems, i.e., for difference equations. Moreover, it will be found out that some results of this kind may be obtained also for some particular two-dimensional problems. (English)
Keyword: difference equation
Keyword: sparse matrices
Keyword: boundary value problems
MSC: 35J05
MSC: 39A10
MSC: 65F50
MSC: 65N06
MSC: 65N22
MSC: 65Q05
idZBL: Zbl 1003.65118
idMR: MR1800965
DOI: 10.1023/A:1022385517615
.
Date available: 2009-09-22T18:05:15Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134452
.
Reference: [1] J. Taufer: Lösung der Randwertprobleme von linearen Differentialgleichungen. Rozpravy ČSAV, Řada mat. a přír. věd, Vol. 83.Academia, Praha, 1973.
Reference: [2] G. H.  Meyer: Initial Value Methods for Boundary Value Problems: Theory and Application of Invariant Imbedding.Academic Press, New York, 1973. Zbl 0304.34018, MR 0488791
Reference: [3] E. Vitásek: Approximate solution of ordinary differential equations.In: Survey of Applicable Mathematics (K. Rektorys and E. Vitásek, eds.), Kluwer Academic Publishers, Dordrecht, 1994, pp. 478–533.
Reference: [4] E. Vitásek: Remark to the problem of transferring boundary conditions in two dimensions.In: Proceedings of the Prague Mathematical Conference 1996, Icaris, Praha, 1997, pp. 337–342. MR 1703984
.

Files

Files Size Format View
AplMat_45-2000-6_5.pdf 304.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo