Previous |  Up |  Next

Article

Keywords:
lower and upper semi-inner product; semi-inner products; Schwarz inequality; smooth normed spaces; Birkhoff orthogonality; best approximants
Summary:
In this paper we introduce two mappings associated with the lower and upper semi-inner product $(\cdot ,\cdot )_i$ and $(\cdot ,\cdot )_s$ and with semi-inner products $[\cdot ,\cdot ]$ (in the sense of Lumer) which generate the norm of a real normed linear space, and study properties of monotonicity and boundedness of these mappings. We give a refinement of the Schwarz inequality, applications to the Birkhoff orthogonality, to smoothness of normed linear spaces as well as to the characterization of best approximants.
References:
[1] D. Amir: Characterizations of Inner Product Spaces. Birkhäuser, Basel, 1986. MR 0897527 | Zbl 0617.46030
[2] K. Deimling: Nonlinear Functional Analysis. Springer, Berlin, 1985. MR 0787404 | Zbl 0559.47040
[3] S. S. Dragomir: A characterization of the elements of best approximation in real normed spaces. Studia Univ. Babeş-Bolyai Math. 33 (1988), 74–80. MR 1027362
[4] S. S. Dragomir: On best approximation in the sense of Lumer and applications. Riv. Mat. Univ. Parma 15 (1989), 253–263. MR 1064263 | Zbl 0718.41037
[5] S. S. Dragomir: On continuous sublinear functionals in reflexive Banach spaces and applications. Riv. Mat. Univ. Parma 16 (1990), 239–250. MR 1105746 | Zbl 0736.46007
[6] S. S. Dragomir: Characterizations of proximinal, semičebyševian and čebyševian subspaces in real normed spaces. Numer. Funct. Anal. Optim. 12 (1991), 487–492. DOI 10.1080/01630569108816444 | MR 1159922
[7] S. S. Dragomir: Approximation of continuous linear functionals in real normed spaces. Rend. Mat. Appl. 12 (1992), 357–364. MR 1185896 | Zbl 0787.46012
[8] S. S. Dragomir: Continuous linear functionals and norm derivatives in real normed spaces. Univ. Beograd. Publ. Elektrotehn. Fak. 3 (1992), 5–12. MR 1218612 | Zbl 0787.46011
[9] S. S. Dragomir, J. J. Koliha: The mapping $\gamma _{x,y}$ in normed linear spaces and applications. J. Math. Anal. Appl. 210 (1997), 549–563. DOI 10.1006/jmaa.1997.5413 | MR 1453191
[10] S. S. Dragomir, J. J. Koliha: Mappings $\Phi ^p$ in normed linear spaces and new characterizations of Birkhoff orthogonality, smoothness and best approximants. Soochow J. Math. 23 (1997), 227–239. MR 1452846
[11] S. S. Dragomir, J. J. Koliha: The mapping $v_{x,y}$ in normed linear spaces with applications to inequality in analysis. J. Ineq. Appl. 2 (1998), 37–55. MR 1671658
[12] J. R. Giles: Classes of semi-inner-product spaces. Trans. Amer. Math. Soc. 129 (1967), 436–446. DOI 10.1090/S0002-9947-1967-0217574-1 | MR 0217574 | Zbl 0157.20103
[13] V. I. Istrǎţescu: Inner Product Structures. D. Reidel, Dordrecht, 1987. MR 0903846
[14] G. Lumer: Semi-inner-product spaces. Trans. Amer. Math. Soc. 100 (1961), 29–43. DOI 10.1090/S0002-9947-1961-0133024-2 | MR 0133024 | Zbl 0102.32701
[15] I. Singer: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Die Grundlehren der math. Wissen. 171, Springer, Berlin, 1970. MR 0270044 | Zbl 0197.38601
[16] I. Singer: The Theory of Best Approximation and Functional Analysis. CBMS-NSF Regional Series in Appl. Math. 13, SIAM, Philadelphia, 1974. MR 0374771 | Zbl 0291.41020
[17] S. S. Dragomir, J. J. Koliha: The mapping $\Psi ^p_{x,y}$ in normed linear spaces and its applications in the theory of inequalities. Math. Ineq. Appl. 2 (1999), 367–381. MR 1698381
Partner of
EuDML logo