[3] S. S. Dragomir:
A characterization of the elements of best approximation in real normed spaces. Studia Univ. Babeş-Bolyai Math. 33 (1988), 74–80.
MR 1027362
[4] S. S. Dragomir:
On best approximation in the sense of Lumer and applications. Riv. Mat. Univ. Parma 15 (1989), 253–263.
MR 1064263 |
Zbl 0718.41037
[5] S. S. Dragomir:
On continuous sublinear functionals in reflexive Banach spaces and applications. Riv. Mat. Univ. Parma 16 (1990), 239–250.
MR 1105746 |
Zbl 0736.46007
[6] S. S. Dragomir:
Characterizations of proximinal, semičebyševian and čebyševian subspaces in real normed spaces. Numer. Funct. Anal. Optim. 12 (1991), 487–492.
DOI 10.1080/01630569108816444 |
MR 1159922
[7] S. S. Dragomir:
Approximation of continuous linear functionals in real normed spaces. Rend. Mat. Appl. 12 (1992), 357–364.
MR 1185896 |
Zbl 0787.46012
[8] S. S. Dragomir:
Continuous linear functionals and norm derivatives in real normed spaces. Univ. Beograd. Publ. Elektrotehn. Fak. 3 (1992), 5–12.
MR 1218612 |
Zbl 0787.46011
[9] S. S. Dragomir, J. J. Koliha:
The mapping $\gamma _{x,y}$ in normed linear spaces and applications. J. Math. Anal. Appl. 210 (1997), 549–563.
DOI 10.1006/jmaa.1997.5413 |
MR 1453191
[10] S. S. Dragomir, J. J. Koliha:
Mappings $\Phi ^p$ in normed linear spaces and new characterizations of Birkhoff orthogonality, smoothness and best approximants. Soochow J. Math. 23 (1997), 227–239.
MR 1452846
[11] S. S. Dragomir, J. J. Koliha:
The mapping $v_{x,y}$ in normed linear spaces with applications to inequality in analysis. J. Ineq. Appl. 2 (1998), 37–55.
MR 1671658
[13] V. I. Istrǎţescu:
Inner Product Structures. D. Reidel, Dordrecht, 1987.
MR 0903846
[15] I. Singer:
Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Die Grundlehren der math. Wissen. 171, Springer, Berlin, 1970.
MR 0270044 |
Zbl 0197.38601
[16] I. Singer:
The Theory of Best Approximation and Functional Analysis. CBMS-NSF Regional Series in Appl. Math. 13, SIAM, Philadelphia, 1974.
MR 0374771 |
Zbl 0291.41020
[17] S. S. Dragomir, J. J. Koliha:
The mapping $\Psi ^p_{x,y}$ in normed linear spaces and its applications in the theory of inequalities. Math. Ineq. Appl. 2 (1999), 367–381.
MR 1698381