[2] V. Barbu:
Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden, 1976.
MR 0390843 |
Zbl 0328.47035
[3] H. Brézis:
Opérateurs Maximaux Monotones et Sémi-groupes de Contractions dans les Espaces de Hilbert. North-Holland Math. Studies 5, North-Holland, Amsterdam, 1973.
MR 0348562
[5] P. Colli, G. Gilardi and M. Grasselli:
Global smooth solution to the standard phase-field model with memory. Adv. Differential Eqations 2 (1997), 453–486.
MR 1441852
[6] P. Colli, G. Gilardi and M. Grasselli:
Well-posedness of the weak formulation for the phase-field model with memory. Adv. Differential Equations 2 (1997), 487–508.
MR 1441853
[7] P. Colli, G. Gilardi and M. Grasselli:
Asymptotic analysis of a phase-field model with memory for vanishing time relaxation. Hiroshima Math. J. 29 (1999), 117–143.
DOI 10.32917/hmj/1206125157 |
MR 1679579
[8] A. Damlamian, N. Kenmochi and N. Sato:
Subdifferential operator approach to a class of nonlinear systems for Stefan problems with phase relaxation. Nonlinear Anal. 23 (1994), 115–142.
DOI 10.1016/0362-546X(94)90255-0 |
MR 1288502
[9] P. Fernandes, G. Gilardi:
Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997), 957–991.
DOI 10.1142/S0218202597000487 |
MR 1479578
[10] G. J. Fix:
Phase field models for free boundary problems. In: Free boundary problems: theory and applications; vol II, A. Fasano and M. Primicerio (eds.), Pitman Res. Notes Math. Ser. 79, Longman, London, 1983, pp. 580–589.
Zbl 0518.35086
[11] L. D. Landau, E. M. Lifshitz:
Statistical Physics. Addison-Wesley Publishing, Reading, Massachusetts, 1958.
MR 0136378
[12] J. L. Lions:
Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Gauthier-Villars, Paris, 1969.
MR 0259693 |
Zbl 0189.40603
[14] G. Savaré, A. Visintin:
Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase. Atti Accad. Naz. Lincei Cl. Sci. Mat. Fis. Natur. Rend. Lincei IX 8 (1997), 49–89.
MR 1484545
[16] J. Simon:
Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl. IV 146 (1987), 65–96.
MR 0916688