Previous |  Up |  Next

Article

Title: Destabilization for quasivariational inequalities of reaction-diffusion type (English)
Author: Babický, Vítězslav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 45
Issue: 3
Year: 2000
Pages: 161-176
Summary lang: English
.
Category: math
.
Summary: We consider a reaction-diffusion system of the activator-inhibitor type with unilateral boundary conditions leading to a quasivariational inequality. We show that there exists a positive eigenvalue of the problem and we obtain an instability of the trivial solution also in some area of parameters where the trivial solution of the same system with Dirichlet and Neumann boundary conditions is stable. Theorems are proved using the method of a jump in the Leray-Schauder degree. (English)
Keyword: reaction-diffusion system
Keyword: unilateral conditions
Keyword: quasivariational inequality
Keyword: Leray-Schauder degree
Keyword: eigenvalue
Keyword: stability
MSC: 35B35
MSC: 35J85
MSC: 35K57
MSC: 35K85
MSC: 47J20
idZBL: Zbl 1058.35133
idMR: MR1757239
DOI: 10.1023/A:1023033910657
.
Date available: 2009-09-22T18:03:15Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134434
.
Reference: [1] A. Gierer, H. Meinhardt: Biological pattern formation involving lateral inhibition.In: Some Mathematical Questions in Biology. VI. Lectures on Mathematics in the Life Sciences, vol 7, 1974, pp. 163–183. MR 0452787
Reference: [2] P. Quittner: On the principle of linearized stability for variational inequalities.Math. Ann. 283 (1989), 257–270. MR 0980597
Reference: [3] P. Drábek, M. Kučera: Reaction-diffusion systems: Destabilizing effect of unilateral conditions.Nonlinear Analysis, Theory, Methods and Applications 12 (1988), 1172–1192. MR 0969497
Reference: [4] M. Kučera, J. Neustupa: Destabilizing effect of unilateral conditions in reaction-diffusion systems.Comment. Math. Univ. Carolinae 27 (1986), 171–187. MR 0843429
Reference: [5] P. Quittner: Bifurcation points and eigenvalues of inequalities of reaction-diffusion type.J. Reine Angew. Math. 380 (1987), 1–13. Zbl 0617.35053, MR 0916198
Reference: [6] M. Bosák, M. Kučera: Bifurcation for quasivariational inequalities of reaction-diffusion type.Stability and Appl. Anal. of Cont. Media 3 (1993), 111–127.
Reference: [7] M. Kučera: Reaction-diffusion systems: Bifurcation and stabilizing effect of conditions given by inclusions.Nonlinear Analysis, Theory, Methods and Applications 27 (1996), 249–260. MR 1391435, 10.1016/0362-546X(95)00055-Z
Reference: [8] M. Kučera: Bifurcation of solutions to reaction-diffusion systems with unilateral conditions.In: Navier-Stokes Equations and Related Nonlinear Problems, A. Sequeira (ed.), Plenum Press, New York, 1995, pp. 307–322. MR 1373224
Reference: [9] J. Eisner, M. Kučera: Spatial patterns for reaction-diffusion systems with conditions described by inclusions.Appl. Math. 42 (1997), 421–449. MR 1475051, 10.1023/A:1022203129542
Reference: [10] J. Eisner, M. Kučera: Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions.(to appear). MR 1759546
Reference: [11] J. L. Lions, E. Magenes: Problèmes aux Limites non Homogènes et Applications.Dunod, Paris, 1970. MR 0291887
Reference: [12] G. Duvaut, J. L. Lions: Les Inéquations en Mécanique et en Physique.Dunod, Paris, 1972. MR 0464857
Reference: [13] E. H. Zarantonello: Projections on convex sets in Hilbert space and spectral theory.In: Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971, pp. 237–424. Zbl 0281.47043, MR 0388177
Reference: [14] M. Mimura, Y. Nishiura and M. Yamaguti: Some diffusive prey and predator systems and their bifurcation problems.Ann. N. Y. Acad. Sci. 316 (1979), 490–521. MR 0556853
Reference: [15] Y. Nishiura: Global structure of bifurcating solutions of some reaction-diffusion systems.SIAM J. Math. Analysis 13 (1982), 555–593. Zbl 0505.76103, MR 0661590, 10.1137/0513037
Reference: [16] P. Quittner: Solvability and multiplicity results for variational inequalities.Comment. Math. Univ. Carolinae 30 (1989), 281–302. Zbl 0698.49004, MR 1014128
.

Files

Files Size Format View
AplMat_45-2000-3_1.pdf 388.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo