Previous |  Up |  Next

Article

Title: Hysteresis operators in phase-field models of Penrose-fife type (English)
Author: Krejčí, Pavel
Author: Sprekels, Jürgen
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 43
Issue: 3
Year: 1998
Pages: 207-222
Summary lang: English
.
Category: math
.
Summary: Phase-field systems as mathematical models for phase transitions have drawn a considerable attention in recent years. However, while they are suitable for capturing many of the experimentally observed phenomena, they are only of restricted value in modelling hysteresis effects occurring during phase transition processes. To overcome this shortcoming of existing phase-field theories, the authors have recently proposed a new approach to phase-field models which is based on the mathematical theory of hysteresis operators developed in the past fifteen years. Well-posedness and thermodynamic consistency were proved for a phase-field system with hysteresis which is closely related to the model advanced by Caginalp in a series of papers. In this note the more difficult case of a phase-field system of Penrose-Fife type with hysteresis is investigated. Under slightly more restrictive assumptions than in the Caginalp case it is shown that the system is well-posed and thermodynamically consistent. (English)
Keyword: phase-field systems
Keyword: phase transitions
Keyword: hysteresis operators
Keyword: well-posedness of parabolic systems
Keyword: thermodynamic consistency
Keyword: Penrose-Fife model
MSC: 35K55
MSC: 47H30
MSC: 80A22
idZBL: Zbl 0940.35106
idMR: MR1620620
DOI: 10.1023/A:1023276524286
.
Date available: 2009-09-22T17:57:49Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134385
.
Reference: [1] Besov, O. V., Il’in, V. P., Nikol’skii, S. M.: Integral representation of functions and embedding theorems.Moscow, Nauka, 1975. (Russian) MR 0430771
Reference: [2] Blowey, J. F., Elliott, C. M.: Curvature dependent phase boundary motion and double obstacle problems.Degenerate Diffusion, W.M. Ni, L.A. Peletier, and J.L. Vázquez (eds.), IMA Vol. Math. Appl. 47, Springer, New York, 1993, pp. 19–60. MR 1246337
Reference: [3] Blowey, J. F., Elliott, C. M.: A phase-field model with double obstacle potential.Motion by mean curvature and related topics, G. Buttazzo and A. Visintin (eds.), De Gruyter, Berlin, 1994, pp. 1–22. MR 1277388
Reference: [4] Brokate, M., Sprekels, J.: Hysteresis and phase transitions.Appl. Math. Sci. Vol.  121, Springer-Verlag, New York, 1996. MR 1411908, 10.1007/978-1-4612-4048-8_5
Reference: [5] Caginalp, G.: An analysis of a phase field model of a free boundary.Arch. Rational Mech. Anal. 92 (1986), 205–245. Zbl 0608.35080, MR 0816623, 10.1007/BF00254827
Reference: [6] Colli, P., Sprekels, J.: On a Penrose-Fife model with zero interfacial energy leading to a phase-field system of relaxed Stefan type.Ann. Mat. Pura Appl. (4) 169 (1995), 269–289. MR 1378478
Reference: [7] Colli, P., Sprekels, J.: Stefan problems and the Penrose-Fife phase-field model.Adv. Math. Sci. Appl. 7 (1997), 911–934. MR 1476282
Reference: [8] Colli, P., Sprekels, J.: Global solutions to the Penrose-Fife phase-field model with zero interfacial energy and Fourier law. Preprint No. 351.WIAS Berlin, 1997. MR 1690376
Reference: [9] Frémond, M., Visintin, A.: Dissipation dans le changement de phase. Surfusion. Changement de phase irréversible.C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 301 (1985), 1265–1268. MR 0880589
Reference: [10] Kenmochi, N., Niezgódka, M.: Systems of nonlinear parabolic equations for phase change problems.Adv. Math. Sci. Appl. 3 (1993/94), 89–117. MR 1287926
Reference: [11] Klein, O.: A semidiscrete scheme for a Penrose-Fife system and some Stefan problems in $R^3$.Adv. Math. Sci. Appl. 7 (1997), 491–523. MR 1454679
Reference: [12] Klein, O.: Existence and approximation results for phase-field systems of Penrose-Fife type and some Stefan problems.Ph.D. thesis, Humboldt University, Berlin, 1997.
Reference: [13] Krasnosel’skii, M. A., Pokrovskii, A. V.: Systems with hysteresis.Springer-Verlag, Heidelberg, 1989. MR 0987431
Reference: [14] Krejčí, P.: Hysteresis, convexity and dissipation in hyperbolic equations.Gakuto Int. Series Math. Sci. & Appl., Vol. 8, Gakkōtosho, Tokyo, 1996. MR 2466538
Reference: [15] Krejčí, P., Sprekels, J.: A hysteresis approach to phase-field models.Submitted.
Reference: [16] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural’tseva, N. N.: Linear and quasilinear equations of parabolic type.American Mathematical Society, 1968.
Reference: [17] Laurençot, Ph.: Solutions to a Penrose-Fife model of phase-field type.J. Math. Anal. Appl. 185 (1994), 262–274. MR 1283056, 10.1006/jmaa.1994.1247
Reference: [18] Laurençot, Ph.: Weak solutions to a Penrose-Fife model for phase transitions.Adv. Math. Sci. Appl. 5 (1995), 117–138. MR 1325962
Reference: [19] Mayergoyz, I. D.: Mathematical models for hysteresis.Springer-Verlag, New York, 1991. MR 1083150
Reference: [20] Penrose, O., Fife, P.C.: Thermodynamically consistent models of phase field type for the kinetics of phase transitions.Physica D 43 (1990), 44–62. MR 1060043, 10.1016/0167-2789(90)90015-H
Reference: [21] Protter, M. H., Weinberger, H. F.: Maximum principle in differential equations.Prentice Hall, Englewood Cliffs, 1967. MR 0219861
Reference: [22] Sprekels, J., Zheng, S.: Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions.J. Math. Anal. Appl. 176 (1993), 200–223. MR 1222165, 10.1006/jmaa.1993.1209
Reference: [23] Visintin, A.: Stefan problem with phase relaxation.IMA J. Appl. Math. 34 (1985), 225–245. Zbl 0585.35053, MR 0804824, 10.1093/imamat/34.3.225
Reference: [24] Visintin, A.: Supercooling and superheating effects in phase transitions.IMA J. Appl. Math. 35 (1985), 233–256. Zbl 0615.35090, MR 0839201, 10.1093/imamat/35.2.233
Reference: [25] Visintin, A.: Differential models of hysteresis.Springer-Verlag, New York, 1994. Zbl 0820.35004, MR 1329094
.

Files

Files Size Format View
AplMat_43-1998-3_3.pdf 387.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo