Previous |  Up |  Next

Article

Keywords:
Laplace equation; Robin problem; single layer potential
Summary:
For open sets with a piecewise smooth boundary it is shown that we can express a solution of the Robin problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series.
References:
[1] J. F. Ahner: The exterior Robin problem for the Helmholtz equations. J. Math. Anal. Appl. 66 (1978), 37–54. DOI 10.1016/0022-247X(78)90268-8 | MR 0513484
[2] R. S. Angell, R. E. Kleinman, J. Král: Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387–402. MR 0981880
[3] M. Brelot: Éléments de la théorie classique du potentiel. Centre de documentation universitaire. Paris, 1961. MR 0106366
[4] Yu. D. Burago, V. G. Maz’ ya: Potential theory and function theory for irregular regions. Seminars in mathematics V. A. Steklov Mathematical Institute. Leningrad, 1969. (Russian) MR 0240284
[5] M. Chlebík: Tricomi potentials. Thesis. Mathematical Institute of the Czechoslovak Academy of Sciences.Praha, 1988. (Slovak)
[6] H. Federer: Geometric Measure Theory. Springer-Verlag, 1969. MR 0257325 | Zbl 0176.00801
[7] I. Gohberg, A. Markus: Some remarks on topologically equivalent norms. Izvestija Mold. Fil. Akad. Nauk SSSR 10 (76) (1960), 91–95. (Russian)
[8] N. V. Grachev, V. G. Maz’ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries. Vest. Leningrad. Univ. 19(4) (1986), 60–64. (Russian) MR 0880678
[9] N. V. Grachev, V. G. Maz’ya: Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points. Report LiTH-MAT-R-91-06, Linköping Univ.,Sweden.
[10] N. V. Grachev, V. G. Maz’ya: Invertibility of boundary integral operators of elasticity on surfaces with conic points. Report LiTH-MAT-R-91-07, Linköping Univ., Sweden.
[11] N. V. Grachev, V. G. Maz’ya: Solvability of a boundary integral equation on a polyhedron. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
[12] H. Heuser: Funktionalanalysis. Teubner, Stuttgart, 1975. MR 0482021 | Zbl 0309.47001
[13] R. E. Kleinman, W. L. Wendland: On Neumann’ s method for the Helmholtz equation. J. Math. Anal. Appl. 57 (1977), 170–202. DOI 10.1016/0022-247X(77)90294-3 | MR 0430513
[14] J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin, 1980. MR 0590244
[15] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511–547. DOI 10.2307/1994580 | MR 0209503
[16] J. Král, W. L. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential heory. Aplikace matematiky 31 (1986), 239–308. MR 0854323
[17] N. L. Landkof: Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966. MR 0214795
[18] J. Lukeš, J. Malý: Measure and Integral. Matfyzpress, 1995. MR 2316454
[19] V. G. Maz’ya: Boundary integral equations . Sovremennyje problemy matematiki, fundamental’nyje napravlenija , 27. Viniti, Moskva, 1988. (Russian)
[20] D. Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary. Czechoslov. Math. J. 47 (1997), 651–679. DOI 10.1023/A:1022818618177 | MR 1479311
[21] D. Medková: Solution of the Neumann problem for the Laplace equation. Czechoslov. Math. J. (in print ). MR 1658269
[22] I. Netuka: The Robin problem in potential theory. Comment. Math. Univ. Carolinae 12 (1971), 205–211. MR 0287021 | Zbl 0215.42602
[23] I. Netuka: Generalized Robin problem in potential theory. Czechoslov. Math. J. 22(97) (1972), 312–324. MR 0294673 | Zbl 0241.31008
[24] I. Netuka: An operator connected with the third boundary value problem in potential theory. Czechoslov. Math. J. 22(97) (1972), 462–489. MR 0316733 | Zbl 0241.31009
[25] I. Netuka: The third boundary value problem in potential theory. Czechoslov. Math. J. 2(97) (1972), 554–580. MR 0313528 | Zbl 0242.31007
[26] I. Netuka: Fredholm radius of a potential theoretic operator for convex sets. Čas. pěst. mat. 100 (1975), 374–383. MR 0419794 | Zbl 0314.31006
[27] I. Netuka: Continuity and maximum principle for potentials of signed measures. Czechoslov. Math. J. 25 (1975), 309–316. MR 0382690 | Zbl 0309.31019
[28] J. Plemelj: Potentialtheoretische Untersuchungen. B. G. Teubner, Leipzig, 1911.
[29] A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Applicable Analysis 45 (1992), 1–4, 135–177. DOI 10.1080/00036819208840093 | MR 1293594
[30] A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Erratum. Applicable Analysis 56 (1995), 109–115. DOI 10.1080/00036819508840313 | MR 1378015
[31] V. D. Sapožnikova: ARRAY(0x9e2e418). Izdat. Leningr. Univ., Leningrad, 1966, pp. 35–44. (Russian Russian)
[32] M. Schechter: Principles of Funtional Analysis. Academic Press, London, 1971. MR 0445263
[33] K. Yosida: Functional Analysis. Springer Verlag, 1965. Zbl 0126.11504
[34] W. P. Ziemer: Weakly Differentiable Functions: Sobolev spaces and functions of bounded variation. Graduate Text in Mathematics 120. Springer-Verlag, 1989. MR 1014685
Partner of
EuDML logo