Previous |  Up |  Next

Article

Title: A note on bounds for non-linear multivalued homogenized operators (English)
Author: Svanstedt, Nils
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 43
Issue: 2
Year: 1998
Pages: 81-92
Summary lang: English
.
Category: math
.
Summary: In this paper we study the behaviour of maximal monotone multivalued highly oscillatory operators. We construct Reuss-Voigt-Wiener and Hashin-Shtrikmann type bounds for the minimal sections of G-limits of multivalued operators by using variational convergence and convex analysis. (English)
Keyword: multivalued operators
Keyword: highly oscillatory operators
Keyword: Reuss-Voigt-Wiener bounds
Keyword: Hashin-Shtrikman bounds
MSC: 35B27
MSC: 35J20
MSC: 35Q35
MSC: 47H04
idZBL: Zbl 0940.47041
idMR: MR1609178
DOI: 10.1023/A:1023210332327
.
Date available: 2009-09-22T17:56:53Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134376
.
Reference: [1] G. Allaire, R. V. Kohn: Optimal bounds on the effective behaviour of a mixture of two well-ordered elastic materials.Q. Appl. Math. 51 (1993), 643–674. MR 1247433, 10.1090/qam/1247433
Reference: [2] H. Attouch: Variational Convergence for Functions and Operators.Pitman Publ., 1984. Zbl 0561.49012, MR 0773850
Reference: [3] M. Avellaneda: Optimal bounds and microgeometries for elastic two-phase composites.SIAM J. Appl. Math. 47 (1987), 1216–1228. Zbl 0632.73079, MR 0916238, 10.1137/0147082
Reference: [4] V. Chiado-Piat, G. Dal Maso and A. Defranceschi: G-convergence of monotone operators.Ann. Inst. H. Poincaré, Anal. Non Lineare 7 (1990), 123–160. MR 1065871, 10.1016/S0294-1449(16)30298-0
Reference: [5] V. Chiado-Piat, A. Defranceschi: Homogenization of monotone operators.Nonlinear Anal. 14, 717–732. MR 1049117, 10.1016/0362-546X(90)90102-M
Reference: [6] G. Dal Maso: An introduction to $\Gamma $-convergence.Birkhäuser Boston, 1993. Zbl 0816.49001, MR 1201152
Reference: [7] A. Defranceschi: G-convergence of cyclically monotone operators.Asymptotic Anal. 1 (1989), 21–37. Zbl 0681.47023, MR 0991415, 10.3233/ASY-1989-2103
Reference: [8] G. Francfort, F. Murat: Homogenization and optimal bounds in linear elasticity.Arch. Rat. Mech. Anal. 94 (1986), 307–334. MR 0846892, 10.1007/BF00280908
Reference: [9] K. Golden, G. Papanicolaou: Bounds for effective parameters of heterogeneous media by analytic continuation.Comm. Math. Phys. (1983), 473–491. MR 0719428, 10.1007/BF01216179
Reference: [10] Z. Hashin: Analysis of composite materials. A survey.J. Appl. Mech. 50 (1983), 483–505. Zbl 0542.73092, 10.1115/1.3167081
Reference: [11] Z. Hashin, S. Shtrikman: A variational approach to the theory of the elastic behaviour of polycrystals.J. Mech. Phys. Solids. 10 (1962), 343–352. MR 0147032, 10.1016/0022-5096(62)90005-4
Reference: [12] Z. Hashin, S. Shtrikman: A variational approach to the theory of the elastic behaviour of multiphase materials.J. Mech. Phys. Solids. 11 (1963), 127–140. MR 0159459, 10.1016/0022-5096(63)90060-7
Reference: [13] R. Hill: Elastic properties of reinforced solids: Some theoretical principles.J. Mech. Phys. Solids 11 (1963), 357–372. Zbl 0114.15804, 10.1016/0022-5096(63)90036-X
Reference: [14] R. V. Kohn, R. Lipton: Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials.Arch. Rat. Mech. Anal. 102 (1988), 331–350. MR 0946964, 10.1007/BF00251534
Reference: [15] D. Lukkassen, L. E. Persson and P. Wall: On some sharp bounds for the homogenized p-Poisson equation.Applicable Analysis 58 (1995), 123–135. MR 1384593, 10.1080/00036819508840366
Reference: [16] K. A. Lurie, A. V. Cherkaev: Exact estimates of the conductivity of composites formed by two isotropically conducting media taken in prescribed proportion.Proc. Roy. Soc. Edinburgh 99A (1984), 71–87. MR 0781086
Reference: [17] G. Milton: On characterizing the set of possible effective tensors of composites: The variational method and the translation method.Comm. Pure Appl. Math. 43 (1990), 63–125. Zbl 0751.73041, MR 1024190, 10.1002/cpa.3160430104
Reference: [18] P. Ponte Castaneda: The effective mechanical properties of nonlinear isotropic composites.J. Mech. Phys. Solids 39 (1991), 45–71. Zbl 0734.73052, MR 1085622, 10.1016/0022-5096(91)90030-R
Reference: [19] P. Ponte Castaneda: New variational principles in plasticity and their application to composite materials.J. Mech. Phys. Solids 40 (1992), 1757–1788. Zbl 0764.73103, MR 1190849, 10.1016/0022-5096(92)90050-C
Reference: [20] P. Suquet: Plasticite et homogeneisation.These, Paris VI (1982).
Reference: [21] P. Suquet: Overall potentials and extremal surfaces of power law or ideally plastic composites.J. Mech. Phys Solids 41 (1993), 981–1002. Zbl 0773.73063, MR 1220788, 10.1016/0022-5096(93)90051-G
Reference: [22] N. Svanstedt: Bounds for homogenized constitutive laws in non-linear elasticity and plasticity (in preparation)..
Reference: [23] D. R. S. Talbot, J. R. Willis: Some simple explicit bounds for the overall behaviour of nonlinear composites.Int. J. Solids Struct. 29 (1992), 1981–1987. MR 1173106
Reference: [24] D. R. S. Talbot, J. R. Willis: Upper and lower bound for the overall properties of a nonlinear composite dielectric I. Random microgeometry.Proc. Royal Soc. London A 447 (1994) (to appear), 365–384.
Reference: [25] L. Tartar: Estimations fines des coefficients homogenises.Ennio De Giorgi Colloquium, P. Kree (ed.), Pitman Publ., London, 1985, pp. 168–187. MR 0909716
Reference: [26] L. Tartar: H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations.Proc. Roy. Soc. Edinburgh 115A (1990), 193–230. MR 1069518
Reference: [27] S. Torquato: Random Heterogeneous media: Microstructures and improved bounds on effective properties.Appl. Mech. Rev. 44 (1991), 37–76. MR 1092035, 10.1115/1.3119494
Reference: [28] L. J. Walpole: On bounds for the overall elastic moduli of anisotropic composites.J. Mech. Phys. Solids 14 (1966), 151–162. 10.1016/0022-5096(66)90035-4
Reference: [29] J. R. Willis: Variational and related methods for the overall properties of composites.Advances in Applied Mechanics 21 (1981), 1–78. Zbl 0476.73053, MR 0706965, 10.1016/S0065-2156(08)70330-2
Reference: [30] J. R. Willis: The overall elastic response of composite materials.J. Appl. Mech. 50 (1983), 1202–1209. Zbl 0539.73003, 10.1115/1.3167202
Reference: [31] J. R. Willis: The structure of overall constitutive relations for a class of nonlinear composites.IMA J. appl. Math. 43 (1989), 231–242. Zbl 0695.73005, MR 1042634, 10.1093/imamat/43.3.231
Reference: [32] E. Zeidler: Nonlinear Functional Analysis and its Applications, Volume III.Springer-Verlag, 1990.
.

Files

Files Size Format View
AplMat_43-1998-2_1.pdf 338.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo