[1] Akaike, H.:
Information theory and an extension of the maximum likelihood principle. Proceedings of the Second International Symposium on Information Theory, B. N. Petrov et al. (eds.), Akademiai Kiado, Budapest, 1973, pp. 267–281.
MR 0483125 |
Zbl 0283.62006
[3] Berlinet, A. and Francq, Ch.:
Identification of a univariate ARMA model. Comp. Statist. 9 (1994), 117–133.
MR 1280755
[4] Brown, L. D.:
Fundamentals of Statistical Exponential Families. Inst. of Mathem. Statist, Hayword, California, 1986.
MR 0882001 |
Zbl 0685.62002
[8] Liese, F. and Vajda, J.:
Convex Statistical Distances. Teubner, Leipzing, 1987.
MR 0926905
[9] Nikolov, V.: Regression and Autoregression Models of Signals and their Recognition by Neural Nets. Diploma Theses. Faculty of Physical and Nuclear Engineering, Czech Tech. University, Prague, 1996. (Czech)
[13] Rockefellar, R. T.: Convex Analysis. Princeton University Press, Princeton, 1970.
[14] Ronchetti, E.: Robust model selection. In Transactions of the Twelfth Prague Conference on Information Theory, ..., J. Á. Víšek, and P. Lachout (eds.), Academy of Sciences of the Czech Republic, Prague, 1994, pp. 200–202.
[16] Sahamoto, Y., Ishiguro, M. and Kitagawa, G.: Akaike Information Criterion Statistics. Reidel, Dordrecht, 1986.
[18] Spanier, J. and Oldham, K. B.: An Atlas of Functions. Springer, Berlin, 1987.
[19] Speed, T. P. and Yu, B.:
Model collection and prediction: Normal regression. Ann. Inst. Statist. Math. 45 (1993), 35–54.
DOI 10.1007/BF00773667 |
MR 1220289
[20] Vajda, I.: Global statistical information, likelihood ratio tests and maximum likelihood estimators. Kybernetika (submitted) (1997).