Article
Keywords:
Gauss-Markov model; linearly sufficient statistics; invariant linearly sufficient statistics
Summary:
Necessary and sufficient conditions are derived for the inclusions $J_0\subset J$ and $J_0^{*}\subset J^{*}$ to be fulfilled where $J_0$, $J_0^{*}$ and $J$, $J^{*}$ are some classes of invariant linearly sufficient statistics (Oktaba, Kornacki, Wawrzosek (1988)) corresponding to the Gauss-Markov models $GM_0=(y,X_0\beta _0,\sigma _0^2V_0)$ and $GM=(y,X\beta ,\sigma ^2V)$, respectively.
References:
[1] J.K. Baksalary, T. Mathew:
Linear sufficiency and completeness in an incorrectly specified general Gauss-Markov model. Sankhyā, Ser A. 48 (1986), 169–180.
MR 0905457
[2] H. Drygas:
Sufficiency and completeness in the general Gauss-Markoff model. Sankhyā, Ser A. 45 (1983), 88–98.
MR 0749356
[4] T. Mathew, P. Bhimasankaram:
Optimality of BLUE$^{\prime }s$ in a general linear model with an incorrect design matrix. J. Statist Plann. Inference 8 (1983), 315–329.
DOI 10.1016/0378-3758(83)90048-4 |
MR 0729248
[5] W. Oktaba, A. Kornacki, J. Wawrzosek:
Invariant linearly sufficient transformations of the general Gauss-Markoff model. Scand. J Statist. 15 (1988), 117–124.
MR 0968158
[7] C.R. Rao, S.K. Mitra:
Generalized Inverse of Matrices and its Applications. Wiley, New York, 1971.
MR 0338013