Previous |  Up |  Next

Article

Title: On caustics associated with Rossby waves (English)
Author: Gorman, Arthur D.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 41
Issue: 5
Year: 1996
Pages: 321-328
Summary lang: English
.
Category: math
.
Summary: Rossby wave equations characterize a class of wave phenomena occurring in geophysical fluid dynamics. One technique useful in the analysis of these waves is the geometrical optics, or multi-dimensional WKB technique. Near caustics, e.g., in critical regions, this technique does not apply. A related technique that does apply near caustics is the Lagrange Manifold Formalism. Here we apply the Lagrange Manifold Formalism to study Rossby waves near caustics. (English)
Keyword: Rossby waves
Keyword: caustics
Keyword: turning points
Keyword: Lagrange manifold
Keyword: WKB
MSC: 34E20
MSC: 35Q35
MSC: 86A10
idZBL: Zbl 0870.34059
idMR: MR1404544
DOI: 10.21136/AM.1996.134329
.
Date available: 2009-09-22T17:51:59Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134329
.
Reference: [1] J. B. Keller: A geometrical theory of diffraction in Calculus of Variations and Its Applications.vol. VIII, Proc. Symp. Appl. Math., ed. L. M. Graves, McGraw-Hill, New York, 1958. MR 0094120
Reference: [2] D. J. Karoly, B. J. Hoskins: Three dimensional propagation of planetary waves.J. Meteor. Soc. Japan. 60 (1982), 109–123. 10.2151/jmsj1965.60.1_109
Reference: [3] H. Yang: Wave Packets, Their Bifurcation in Geophysical Fluid Dynamics.Springer-Verlag, New York, 1991. MR 1077832
Reference: [4] C. Knessl, J. B. Keller: Rossby waves.Stud. Apl. Math. 94 (1995), 359–376. MR 1330881, 10.1002/sapm1995944359
Reference: [5] D. J. Karoly: Rossby wave propagation in a barotropic atmosphere.Dyn. Oceans and Atmos. 7 (1983), 111–125.
Reference: [6] V. G. Gnevyshev, V. I. Shira: Monochromatic Rossby wave transformation in zonal critical layers.Izv. Atmos. Ocean Phys. 25 (1989), 628–635. MR 1083856
Reference: [7] H. Yang: Evolution of a Rossby wave packet in barotropic flows with asymmetric basic current, topography and $\delta $-effect.J. Atmos. Sci. 44 (1987), 2267–2276. 10.1175/1520-0469(1987)044<2267:EOARWP>2.0.CO;2
Reference: [8] V. I. Arnol’d: Characteristic class entering in quantification conditions.Funct. Anal. Appl. 1 (1967), 1–13. MR 0211415, 10.1007/BF01075861
Reference: [9] V. P. Maslov: Theorie des Perturbationes et Methodes Asymptotique.Dunod, Gauthier-Villars, Paris, 1972.
Reference: [10] A. D. Gorman: Space-Time caustics.Int. J. Math. and Math. Sci. 9 (1986), 531–540. Zbl 0613.34046, MR 0859121, 10.1155/S0161171286000662
Reference: [11] A. D. Gorman: Vector fields near caustics.J. Math. Phys. 26 (1985), 1404–1407. Zbl 0568.58018, MR 0790091, 10.1063/1.526954
Reference: [12] K. C. Chen: Asymptotic theory of wave propagation in spatial and temporal dispersive inhomogeneous media.J. Math. Phys. 12 (1971), 743–753. MR 0287799, 10.1063/1.1665643
.

Files

Files Size Format View
AplMat_41-1996-5_1.pdf 794.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo