[1] Bellen, A., Jackiewicz, Z., Zennaro, M.:
Local error estimation for singly-implicit formulas by two-step Runge-Kutta methods. BIT 32 (1992), 104–117.
DOI 10.1007/BF01995111 |
MR 1203092
[4] Butcher, J. C.:
The numerical analysis of ordinary differential equations. Runge-Kutta and general linear methods, New York, John Wiley, 1987.
MR 0878564 |
Zbl 0616.65072
[6] Hairer, E., Wanner, G.:
Multistep-multistage-multiderivative methods for ordinary differential equations. Computing 11 (1973), 287–303.
DOI 10.1007/BF02252917 |
MR 0378422
[8] Hull, T. E., Enright, W. M., Fellen, B. M. Sedgwick, A. E.:
Comparing numerical methods for ordinary differential equations. SIAM J. Numer. Anal. 9 (1972), 603–637.
DOI 10.1137/0709052 |
MR 0351086
[9] Jackiewicz, Z., Renaut, R., Feldstein, A.:
Two-step Runge-Kutta methods. SIAM J. Numer. Anal. 28 (1991), 1165–1182.
DOI 10.1137/0728062 |
MR 1111459
[10] Jackiewicz, Z., Zennaro, M.:
Variable stepsize explicit two-step Runge-Kutta methods. Technical Report No. 125. Arizona State Univ. Math. Comp. vol. 59, 1992, pp. 421–438.
MR 1136222
[12] Renaut, R.: Numerical solution of hyperbolic partial differential equations. Ph.D. thesis. Cambridge University, England, 1985.
[14] Renaut, R. A.: Runge-Kutta methods for the method of lines solutions of partial differential equations. Submitted (1994.).
[15] Rizzi, A. W., Inouye, M.:
Time split finite-volume method for three-dimensional blunt-body flow. AIAA J. 11 (1973), no. 11, 1478–1485.
DOI 10.2514/3.50614
[16] Verwer, J. G.:
Multipoint multistep Runge-Kutta methods I: On a class of two-step methods for parabolic equations. Report NW 30/76. Mathematisch Centrum, Department of Numerical Mathematics, Amsterdam 1976.
Zbl 0332.65043
[17] Verwer, J. G.:
Multipoint multistep Runge-Kutta methods II: The construction of a class of stabilized three-step methods for parabolic equations. Report NW 31/76. Mathematisch Centrum, Department of Numerical Mathematics, Amsterdam 1976.
Zbl 0332.65044
[18] Verwer, J. G.:
An implementation of a class of stabilized explicit methods for the time integration of parabolic equations. ACM Trans. Math. Software 6 (1980), 188–205.
DOI 10.1145/355887.355892 |
Zbl 0431.65069
[19] Watt, J. M.:
The asymptotic discretization error of a class of methods for solving ordinary differential equations. Proc. Camb. Phil. Soc. 61 (1967), 461–472.
MR 0210327 |
Zbl 0153.18103