Previous |  Up |  Next

Article

Title: Shape optimization of elastic axisymmetric plate on an elastic foundation (English)
Author: Salač, Petr
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 40
Issue: 4
Year: 1995
Pages: 319-338
Summary lang: English
.
Category: math
.
Summary: An elastic simply supported axisymmetric plate of given volume, fixed on an elastic foundation, is considered. The design variable is taken to be the thickness of the plate. The thickness and its partial derivatives of the first order are bounded. The load consists of a concentrated force acting in the centre of the plate, forces concentrated on the circle, an axisymmetric load and the weight of the plate. The cost functional is the norm in the weighted Sobolev space of the deflection curve of radius. Existence of a solution of the optimization problem of the state problem is proved. Approximate problem is introduced and convergence of its solutions to that of the continuous problem is established. (English)
Keyword: shape optimization
Keyword: axisymmetric elliptic problems
Keyword: elasticity
MSC: 73C99
MSC: 73K10
MSC: 73k40
MSC: 74B99
MSC: 74K20
MSC: 74P99
idZBL: Zbl 0839.73036
idMR: MR1331921
DOI: 10.21136/AM.1995.134297
.
Date available: 2009-09-22T17:48:34Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134297
.
Reference: [1] D. Begis, R. Glowinski: Application de la méthode des éléments finis à l’approximation d’un problème de domaine optimal. Méthodes de résolution des problèmes approchés.Applied Mathematics. Optimization 2 (1975), 130–169. MR 0443372
Reference: [2] P.G. Ciarlet: The finite element method for elliptic problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [3] I. Hlaváček: Optimization of the shape of axisymmetric shells.Apl. Mat. 28 (1983), 269–294. MR 0710176
Reference: [4] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies, An Introduction.Elsevier, Amsterdam, 1981. MR 0600655
Reference: [5] J. Chleboun: Optimal design of an elastic beam on an elastic basis.Apl. Mat. 31 (1986), 118–140. Zbl 0606.73108, MR 0837473
Reference: [6] K. Rektorys: Variational methods in mathematics, science and engineering.D. Reidel Publishing Company, Dordrecht-Holland/Boston U.S.A., 1977. MR 0487653
Reference: [7] A. Kufner: Weighted Sobolev spaces.John Wiley & Sons, New York, 1985. Zbl 0579.35021, MR 0802206
Reference: [8] H. Triebel: Interpolation theory, function spaces, differential operators.VEB Deutscher Verlag der Wissenschaften, Berlin, 1975. MR 0500580
Reference: [9] V. Jarník: Differential calculus II.Academia, Praha, 1976. (Czech)
Reference: [10] S. Fučík, J. Milota: Mathematical analysis II, Differential calculus of functions of several variables.UK, Praha, 1975. (Czech)
.

Files

Files Size Format View
AplMat_40-1995-4_4.pdf 2.040Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo