Previous |  Up |  Next

Article

Keywords:
order $\alpha $-$\beta $ weighted information energy; asymptotic distribution; testing of hypotheses
Summary:
A statistic using the concept of order $\alpha $-$\beta $ weighted information energy introduced by Tuteja et al. (1992) is considered and its asymptotic distribution in a stratified random sampling is obtained. Some special cases are also discussed.
References:
[1] N.I. Aggarwal, C.F. Picard: Functional equations and information measures with preference. Kybernetika 14 (1978), 174–181. MR 0506647
[2] M. Belis, G. Guiasu: A quantitative-qualitative measure of information in cybernetic systems. IEEE Trans. Inform. Theory 14 (1968), 593–594. DOI 10.1109/TIT.1968.1054185
[3] D.A.S. Fraser: Nonparametric Methods in Statistics. John Wiley, New York, 1957. MR 0083868 | Zbl 0077.12903
[4] M.A. Gil: A note on stratification and gain in precision in estimating diversity from large samples. Communications in Statistics. Theory and Methods 18 (1989), no. 4, 1521–1526. MR 1010120 | Zbl 0696.62261
[5] M.A. Gil: On the asymptotic optimum allocation in estimating inequality from complete data. Kybernetika 28 (1992), 325–337. MR 1183623 | Zbl 0771.62083
[6] S. Guiasu: The least weighted deviation. Information Sciences 53 (1991), 271–284. DOI 10.1016/0020-0255(91)90040-2 | MR 1078323 | Zbl 0705.62015
[7] F. Gurdial, F. Pesson: On useful information of order $\alpha $. JCISS 3 (1973), 158–162. MR 0484751
[8] J. Havrda, F. Charvát: Quantification method of classification processes: Concepts of structural entropy. Kybernetika 3 (1967), 30–35. MR 0209067
[9] D.S. Hooda: A non-additive generalized measure of relative useful information. Pure App. Math. Sci. 22 (1984), no. 1, 2, 143–151. MR 0748130 | Zbl 0541.94009
[10] P.L. Kannappan: On some functional equations for additive and nonadditive measures. Stochastica 1 (1980), 15–22. MR 0573722
[11] S. Kotz, N.M. Johnson, D.W. Boid: Series representation of quadratic forms in normal variables. I. Central Case. AMS (1967), 823–837.
[12] K.V. Mardia, J.T. Kent, J.M. Bibby: Multivariate Analysis. Academic Press, 1982.
[13] M. Mohan, J. Mitter: On bounds of useful information measures. Information and Control 39 (1978), 233–236. MR 0504304
[14] O. Onicescu: Energie informationelle. C. R. Acad. Sci. Paris, Ser. A 263 (1966), 841–842. MR 0229478
[15] J.A. Pardo: Caracterización axiomática de la energía informacional util. Estadística Española 108 (1985), 107–116.
[16] J.A. Pardo: On the asymptotic distribution of useful Shannon entropy in a stratified sampling. Metron, LI (1993), no. 1,2, 119–137. MR 1292180 | Zbl 0829.62009
[17] J.A. Pardo, M.L. Vicente: Asymptotic distribution of the useful informational energy. Kybernetika 30 (1994), no. 1, 87–99. MR 1267473
[18] L. Pardo: Energía informacional util. Trabajos de Estadística e investigación operativa 32 (1981), no. 2, 85–94.
[19] L. Pardo: The order $\alpha $ information energy gain in sequential design of experiments. Proceedings Third European Young Statisticians Meeting, 1983, pp. 140–147.
[20] L. Pardo, D. Morales, V. Quesada: Plan de muestreo secuencial basado en la energía informacional para una población exponencial. Trabajos de Estadística e I.O. 36 (1985), 233–242.
[21] L. Pardo: Order $\alpha $ weighted information energy. Information Science 40 (1986), 155–164. DOI 10.1016/0020-0255(86)90005-8 | MR 0879040 | Zbl 0629.94007
[22] L. Pardo: La energía informacional en el muestreo secuencial: Aplicación a las poblaciones normales. Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid LXXXI (1987), 103–115.
[23] L. Pardo, M.L. Menéndez, J.A. Pardo: A sequential selection method of a fixed number of fuzzy information systems based on the information energy gain. Fuzzy Sets and Systems 25 (1988), 97–105. MR 0918013
[24] L. Pardo, M.L. Menéndez: Applications of the informational energy to the design and comparison of regression experiment in a bayesian context. Journal of Combinatiorics, Information & System Sciences 14 (1989), no. 4, 163–171. MR 1121799
[25] A. Pérez: Sur l’energie informationelle de M. Octavio Onicescu. Rev. Roumaine Math. Pures Appli. 12 (1966), 1341–1347. MR 0233464
[26] C.F. Picard: Graphs et Questionnaires. Gauthier–Villars, Paris, 1972.
[27] C.F. Picard: Weighted probabilistic information measures. J. Comb. & Syst. Sci. 4 (1979), 343–356. MR 0573149 | Zbl 0447.94011
[28] J.N.K. Rao, A.J. Scott: The analysis of categorical data from complex sample surveys: chi-squared tests for goodness of fit and independence in two way tables. J. Amer. Stat. Assoc. 76 (1981), 221–230. DOI 10.1080/01621459.1981.10477633 | MR 0624328
[29] C.E. Shannon: The Mathematical theory of communications. Bell System Techn. J. 27 (1948), 379–423. DOI 10.1002/j.1538-7305.1948.tb01338.x | MR 0026286
[30] B.D. Sharma, J. Mitter, M. Mohan: On measures of useful information. Information and Control 39 (1978), 123–136. DOI 10.1016/S0019-9958(78)90671-X | MR 0523446
[31] B.D. Sharma, R.P. Shings: On generating information measures with preference. JCISS 8 (1983), 61–72.
[32] B.D. Sharma, I.J. Taneja: Entropy of type $(\alpha ,\beta )$ and other generalized measures in information theory. Metrika 22 (1975), 205–215. DOI 10.1007/BF01899728 | MR 0398670
[33] R.P. Singh: On information measure of type $(\alpha ,\beta )$ with preference. Caribb. J. Math. 2 (1983), no. 1 & 2, 25–37. MR 0750351 | Zbl 0531.94007
[34] A. Theodorescu: Energie informationnelle et notions apparentes. Trabajos de Estadística e Investigación Operativa 28 (1977), 183–206. DOI 10.1007/BF02888311 | MR 0530213
[35] R.K. Tuteja, S. Chaudhary: Order $\alpha $-$\beta $ weighted information energy. Information Sciences 66 (1992), 53–61. DOI 10.1016/0020-0255(92)90087-O | MR 1178218
[36] I. Vajda: Axiomatic definition of energy of complete and incomplete probability schemes. Bull. Math. Soc. Sci. Math. Roum. 11 (1967), 197–203. MR 0229479
Partner of
EuDML logo