Article
Keywords:
mean square approximation; periodic Hilbert space; exponential interpolants; optimal periodic interpolation
Summary:
Following the research of Babuška and Práger, the author studies the approximation power of periodic interpolation in the mean square norm thus extending his own former results.
References:
[1] I. Babuška:
Über universal optimale Quadraturformeln. Teil 1. Apl. mat. 13 (1968), 304–308.
MR 0244680
[2] E.W. Cheney:
Approximation by functions of nonclassical form. Approximation theory, Spline functions and Applications, S.P. Singh (ed.), NATO ASI Series C, 356, 1992, pp. 1–18.
MR 1165960 |
Zbl 0751.41001
[4] F.-J. Delvos:
Approximation by optimal periodic interpolation. Apl. mat. 35 (1990), 451–457.
MR 1089925 |
Zbl 0743.41005
[5] S.L. Lee, W.S. Tang:
Approximation and spectral properties of periodic spline operators. Proc. Edinburgh Math. Soc. 34 (1991), 363–382.
MR 1131957
[6] S.L. Lee, R.C.E. Tan, W.S. Tang:
$L_2$-approximation by the translates of a function and related attenuation factors. Numer. Math. 60 (1992), 549–568.
DOI 10.1007/BF01385736 |
MR 1142312
[8] M. Práger:
Universally optimal approximation of functionals. Apl. mat. 24 (1979), 406–420.
MR 0547044