Article
Keywords:
Kalmbach measurability; Boolean algebra; orthomodular lattice
Summary:
In this note we show that, for an arbitrary orthomodular lattice $L$, when $\mu $ is a faithful, finite-valued outer measure on $L$, then the Kalmbach measurable elements of $L$ form a Boolean subalgebra of the centre of $L$.
References:
[1] E. Beltrametti, G. Cassinelli:
The logic of quantum mechanics. Addison Wesley, Reading MA, 1981.
MR 0635780
[2] L. Beran:
Orthomodular Lattices. Algebraic approach, Academia, Prague and Reidel, Dordrecht, 1984.
MR 0785005
[6] P. Pták, S. Pulmannova:
Orthomodular structures as quantum logics. Kluwer, Dordrecht, 1991.
MR 1176314