Previous |  Up |  Next

Article

Keywords:
rate-type models; viscoelasticity; viscoplasticity; fixed point; iterative method; error estimates; finite element method
Summary:
This paper deals with an initial and boundary value problem describing the quasistatic evolution of rate-type viscoplastic materials. Using a fixed point property, an iterative method in the study of this problem is proposed. A concrete algorithm as well as some numerical results in the one-dimensional case are also presented.
References:
[1] H. Geiringer and A. M. Freudenthal: The mathematical theories of the inelastic continuum. Handbuch der Physik, Springer-Verlag, Berlin, 1958. MR 0093963
[2] N. Cristescu and I. Suliciu: Viscoplasticity. Martinus Nijhoff, The Netherlands and Ed. Tehnica, Bucarest, 1982. MR 0691135
[3] I. Suliciu: Some energetic properties of smooth solutions in rate-type viscoelasticity. Internat. J. Nonlin. Mech. 19(6) (1984), 325–344. DOI 10.1016/0020-7462(84)90049-0 | MR 0769360 | Zbl 0553.73026
[4] I. R. Ionescu and M. Sofonea: Quasistatic processes for elastic-visco-plastic materials. Quart. Appl. Math. 2 (1988), 229–243. DOI 10.1090/qam/950599 | MR 0950599
[5] I. R. Ionescu: Error estimates of an Euler method for a quasistatic elastic-visco-plastic problem. ZAMM, Z. angew. Math. Mech. 3 (1990), 173–180. DOI 10.1002/zamm.19900700304 | MR 1047857 | Zbl 0712.73028
[6] S. Djabi and M. Sofonea: A fixed point method in quasistatic rate-type viscoplasticity. To appear in Appl. Math. and Comp. Sci. 3(1) (1993). MR 1248215
[7] J. Nečas and I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: an introduction. Elsevier, Amsterdam, 1981. MR 0600655
[8] J. Kratochvíl and J. Nečas: On the existence of the solution of boundary-value problems for elastic-inelastic solids. Comment. Math. Univ. Carolinae 14 (1973), 755–760. MR 0337100
[9] O. John: On the solution of displacement boundary-value problem for elastic-inelastic materials. Appl. Maths. 19 (1974), 65–71. MR 0347200
[10] P. Laborde: Problèmes quasivariationnels en visco-plasticité avec écrouissage. C.R. Acad. Sci. Paris, Série A 283 (1976), 393–396.
[11] P. Laborde: On visco-plasticity with hardening. Numerical Functional Analysis and Optimization 1(3) (1979), 315–339. DOI 10.1080/01630567908816019 | MR 0537835 | Zbl 0462.73015
[12] P. Ciarlet: The finite element method for elliptic problem. North-Holland, Amsterdam, 1978. MR 0520174
Partner of
EuDML logo