Article
Keywords:
periodic system; period map; invariant set; flow
Summary:
We investigate the nonautonomous periodic system of ODE’s of the form $\dot{x}=\vec{v}(x)+r_{p}(t)(\vec{w}(x)-\vec{v}(x))$, where $r_{p}(t)$ is a $2p$-periodic function defined by $r_{p}(t)=0$ for $t\in \langle 0,p\rangle $, $r_{p}(t)=1$ for $t\in (p,2p)$ and the vector fields $\vec{v}$ and $\vec{w}$ are related by an involutive diffeomorphism.
References:
[1] W.M. Boothby:
An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, New York, 1975.
MR 0426007 |
Zbl 0333.53001
[2] J.Řeháček, M. Kubíček, M. Marek: Modelling of a Tubular Catalytic Reactor with Flow Reversal. Preprint 92-001, AHPCRC, University of Minnesota, Minneapolis.
[3] C. Sparrow:
The Lorenz Equations Bifurcations, Chaos and Strange Attractors. Springer-Verlag, New York, 1982.
MR 0681294 |
Zbl 0504.58001
[4] V. A. Pliss: Integralnye mnozhestva periodicheskikh sistem differencialnykh uravnenij. Nauka, Moscow, 1977. (Russian)
[6] J. Kurzweil, O. Vejvoda:
Periodicheskie resheniya sistem differencialnykh uravnenij. Czech. Math. J. 5 (1955), no. 3. (Russian)
MR 0076127