[2] Callegari, A., Nachman, A.:
A nonlinear singular boundary value problem in the theory of pseudoplastic fluids. SIAM J. Appl. Math. 38 (1980), 275–281.
DOI 10.1137/0138024 |
MR 0564014
[3] Atkinson, C., Bouillet, J. E.:
Some qualitative properties of solutions of a generalized diffusion equation. Proc. Camb. Phil. Soc. 86 (1979), 495–510.
DOI 10.1017/S030500410005636X |
MR 0542697
[6] Kiguradze, I. T.:
Some Singular Boundary Value Problems for Ordinary Differential Equations. Izdat. Tbilis. Univ., Tbilisi, 1975. (Russian)
MR 0499402
[7] Kiguradze, I. T.:
Some optimal conditions for solvability of two-point singular boundary value problem. Functional Differential Equations 10 (2003), 259–281.
MR 2017411
[8] Kiguradze, I. T., Shekhter, B. L.:
Singular boundary value problems for second order ordinary differential equations. Itogi Nauki Tekh., Ser. Sovrm. Probl. Mat., Viniti 30 (1987), 105–201.
MR 0925830
[9] O’Regan, D.:
Theory of Singular Boundary Value Problems. World Scientific, Singapore, 1995.
MR 1286741
[10] O’Regan, D.:
Existence principles and theory for singular Dirichlet boundary value problems. Differential Equations and Dynamical Systems 3 (1995), 289–304.
MR 1386750
[13] Bobisud, L. E., O’Regan, D.:
Positive solutions for a class of nonlinear singular boundary value problems at resonance. J. Math. Anal. Appl. 184 (1994), 263–284.
DOI 10.1006/jmaa.1994.1199 |
MR 1278388
[15] Lomtatidze, A., Malaguti, L.:
On a two-point boundary value problem for the second order ordinary differential equations with singularities. Nonlinear Anal. 52 (2003), 1553–1567.
DOI 10.1016/S0362-546X(01)00148-1 |
MR 1951507
[16] Baxley, J. V.:
Numerical solution of singular nonlinear boundary value problems. Proceedings of the Third International Colloquium in Numerical Analysis. Plovdiv, Bulgaria, August 13–17, 1994, 1995, pp. 15–24.
MR 1455945 |
Zbl 0843.65055
[17] Baxley, J. V., Thompson, H. B.:
Boundary behavior and computation of solutions of singular nonlinear boundary value problems. Communications on Appl. Analysis 4 (2000), 207–226.
MR 1752847
[19] Cabada, A., Pouso, L. R.:
Existence results for the problem $(\phi (u^{\prime }))^{\prime }=f(t, u, u^{\prime })$ with nonlinear boundary conditions. Nonlinear Anal. 35 (1999), 221–231.
MR 1643240
[20] Wang, J., Gao, W., Lin, Z.:
Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem. Tôhoku Math. J. 47 (1995), 327–344.
DOI 10.2748/tmj/1178225520 |
MR 1344906