Previous |  Up |  Next

Article

Keywords:
singular Dirichlet problem; $$-Laplacian; existence of smooth solution; lower and upper functions
Summary:
We provide sufficient conditions for solvability of a singular Dirichlet boundary value problem with $$-Laplacian \[ \BOF\unknown. ((u^{\prime }))^{\prime } = f(t, u, u^{\prime }), u(0) = A, \ u(T) = B, \BOF\unknown. \] where $$ is an increasing homeomorphism, $(\mathbb{R})=\mathbb{R}$, $(0)=0$, $f$ satisfies the Carathéodory conditions on each set $[a, b]\times \mathbb{R}^{2}$ with $[a, b]\subset (0, T)$ and $f$ is not integrable on $[0, T]$ for some fixed values of its phase variables. We prove the existence of a solution which has continuous first derivative on $[0, T]$.
References:
[1] Callegari, A., Nachman, A.: Some singular, nonlinear differential equations arising in boundary layer theory. J. Math. Anal. Appl. 64 (1978), 96–105. DOI 10.1016/0022-247X(78)90022-7 | MR 0478973
[2] Callegari, A., Nachman, A.: A nonlinear singular boundary value problem in the theory of pseudoplastic fluids. SIAM J. Appl. Math. 38 (1980), 275–281. DOI 10.1137/0138024 | MR 0564014
[3] Atkinson, C., Bouillet, J. E.: Some qualitative properties of solutions of a generalized diffusion equation. Proc. Camb. Phil. Soc. 86 (1979), 495–510. DOI 10.1017/S030500410005636X | MR 0542697
[4] Esteban, J. R., Vazques, J. L.: On the equation of turbulent filtration in one-dimensional porous media. Nonlinear Anal. 10 (1986), 1303–1325. DOI 10.1016/0362-546X(86)90068-4 | MR 0866262
[5] Hidekazu Asakawa: Nonresonant singular two-point boundary value problems. Nonlinear Anal. 44 (2001), 791–809. DOI 10.1016/S0362-546X(99)00308-9 | MR 1825782 | Zbl 1042.34526
[6] Kiguradze, I. T.: Some Singular Boundary Value Problems for Ordinary Differential Equations. Izdat. Tbilis. Univ., Tbilisi, 1975. (Russian) MR 0499402
[7] Kiguradze, I. T.: Some optimal conditions for solvability of two-point singular boundary value problem. Functional Differential Equations 10 (2003), 259–281. MR 2017411
[8] Kiguradze, I. T., Shekhter, B. L.: Singular boundary value problems for second order ordinary differential equations. Itogi Nauki Tekh., Ser. Sovrm. Probl. Mat., Viniti 30 (1987), 105–201. MR 0925830
[9] O’Regan, D.: Theory of Singular Boundary Value Problems. World Scientific, Singapore, 1995. MR 1286741
[10] O’Regan, D.: Existence principles and theory for singular Dirichlet boundary value problems. Differential Equations and Dynamical Systems 3 (1995), 289–304. MR 1386750
[11] O’Regan, D.: Singular Dirichlet boundary value problems I. Superlinear and nonresonant case. Nonlinear Anal., Theory Methods Appl. 29 (1997), 221–245. DOI 10.1016/S0362-546X(96)00026-0 | MR 1446226
[12] O’Regan, D.: Singular Dirichlet boundary value problems II. Resonance case. Czechoslovak Math. J. 48 (1998), 269–289. DOI 10.1023/A:1022837420342 | MR 1624319
[13] Bobisud, L. E., O’Regan, D.: Positive solutions for a class of nonlinear singular boundary value problems at resonance. J. Math. Anal. Appl. 184 (1994), 263–284. DOI 10.1006/jmaa.1994.1199 | MR 1278388
[14] Lepin, A., Ponomarev, V.: On a singular boundary value problem for a second order ordinary differential equation. Nonlinear Anal. 42 (2000), 949–960. DOI 10.1016/S0362-546X(99)00139-X | MR 1780446
[15] Lomtatidze, A., Malaguti, L.: On a two-point boundary value problem for the second order ordinary differential equations with singularities. Nonlinear Anal. 52 (2003), 1553–1567. DOI 10.1016/S0362-546X(01)00148-1 | MR 1951507
[16] Baxley, J. V.: Numerical solution of singular nonlinear boundary value problems. Proceedings of the Third International Colloquium in Numerical Analysis. Plovdiv, Bulgaria, August 13–17, 1994, 1995, pp. 15–24. MR 1455945 | Zbl 0843.65055
[17] Baxley, J. V., Thompson, H. B.: Boundary behavior and computation of solutions of singular nonlinear boundary value problems. Communications on Appl. Analysis 4 (2000), 207–226. MR 1752847
[18] De Coster, C.: Pairs of positive solutions for the one-dimensional $p$-Laplacian. Nonlinear Anal., Theory Methods Appl. 23 (1994), 669–681. DOI 10.1016/0362-546X(94)90245-3 | MR 1297285 | Zbl 0813.34021
[19] Cabada, A., Pouso, L. R.: Existence results for the problem $(\phi (u^{\prime }))^{\prime }=f(t, u, u^{\prime })$ with nonlinear boundary conditions. Nonlinear Anal. 35 (1999), 221–231. MR 1643240
[20] Wang, J., Gao, W., Lin, Z.: Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem. Tôhoku Math. J. 47 (1995), 327–344. DOI 10.2748/tmj/1178225520 | MR 1344906
Partner of
EuDML logo