[3] J. H. Brandts:
The Cauchy-Riemann equations: discretization by finite elements, fast solution of the second variable, and a posteriori error estimation. Advances Comput. Math. 15 (2001), 61–77.
DOI 10.1023/A:1014217225870 |
MR 1887729 |
Zbl 0996.65120
[4] Z. Cai, C. I. Goldstein, J. Pasciak:
Multilevel iteration for mixed finite element systems with penalty. SIAM J. Sci. Comput. 14 (1993), 1072–1088.
DOI 10.1137/0914065 |
MR 1232176
[5] F. Brezzi:
On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Anal. Numér. 8 (1974), 129–151.
MR 0365287 |
Zbl 0338.90047
[6] R. Ewing, J. Wang:
Analysis of multilevel decomposition iterative methods for mixed finite element methods. RAIRO Modèl. Math. Anal. Numér. 28 (1994), 377–398.
DOI 10.1051/m2an/1994280403771 |
MR 1288504
[7] V. Girault, P. A. Raviart:
Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer Series in Computational Mathematics, Springer, Berlin, 1986.
MR 0851383
[9] R. Hiptmair, T. Schiekofer, B. Wohlmuth:
Multilevel preconditioned augmented Lagrangian techniques for 2nd order mixed problems. Computing 57 (1996), 25–48.
DOI 10.1007/BF02238356 |
MR 1398269
[10] P. A. Raviart, J. M. Thomas:
A mixed finite element method for 2nd order elliptic problems. Math. Aspects Finite Elem. Math., Proc. Conf. Rome 1975. Lect. Notes Math. 606 (1977), 292–315.
MR 0483555
[11] R. P. Stevenson:
A stable, direct solver for the gradient equation. Math. Comp (to appear).
MR 1933813 |
Zbl 1012.65126
[12] A. J. Wathen, B. Fischer, D. J. Silvester:
The convergence rate of the minimal residual method for the Stokes problem. Numer. Math. 71 (1995), 121–134.
DOI 10.1007/s002110050138 |
MR 1339734